/* nag_zero_nonlin_eqns_deriv_rcomm (c05rdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 25, 2014.
*/
#include <nag.h>
#include <nagx04.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>
#include <nagx02.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL fcn(Integer n, const double x[], double fvec[],
double fjac[], Integer irevcm);
#ifdef __cplusplus
}
#endif
int main(void)
{
Integer exit_status = 0, i, n = 9, irevcm;
double *diag = 0, *fjac = 0, *fvec = 0, *qtf = 0, *r = 0, *x = 0,
*rwsav = 0;
Integer *iwsav = 0;
double factor, xtol;
/* Nag Types */
NagError fail;
Nag_ScaleType scale_mode;
INIT_FAIL(fail);
printf("nag_zero_nonlin_eqns_deriv_rcomm (c05rdc) Example Program Results\n");
if (n > 0)
{
if (!(diag = NAG_ALLOC(n, double)) ||
!(fjac = NAG_ALLOC(n*n, double)) ||
!(fvec = NAG_ALLOC(n, double)) ||
!(qtf = NAG_ALLOC(n, double)) ||
!(r = NAG_ALLOC(n*(n+1)/2, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(iwsav = NAG_ALLOC(17, Integer)) ||
!(rwsav = NAG_ALLOC(4*n + 10, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Invalid n.\n");
exit_status = 1;
goto END;
}
/* The following starting values provide a rough solution. */
for (i = 0; i < n; i++)
x[i] = -1.0;
/* nag_machine_precision (x02ajc).
* The machine precision
*/
xtol = sqrt(nag_machine_precision);
for (i = 0; i < n; i++)
diag[i] = 1.0;
scale_mode = Nag_ScaleProvided;
factor = 100.0;
irevcm = 0;
/* nag_zero_nonlin_eqns_deriv_rcomm (c05rdc).
* Solution of a system of nonlinear equations (function values only,
* reverse communication)
*/
do
{
nag_zero_nonlin_eqns_deriv_rcomm(&irevcm, n, x, fvec, fjac, xtol,
scale_mode, diag, factor, r, qtf, iwsav,
rwsav, &fail);
switch (irevcm)
{
case 1:
/* x and fvec are available for printing */
break;
case 2:
case 3:
fcn(n, x, fvec, fjac, irevcm);
break;
}
} while (irevcm != 0);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zero_nonlin_eqns_deriv_rcomm (c05rdc).\n%s\n",
fail.message);
exit_status = 1;
if (fail.code != NE_TOO_SMALL &&
fail.code != NE_NO_IMPROVEMENT)
goto END;
}
printf(fail.code == NE_NOERROR ? "Final approximate" : "Approximate");
printf(" solution\n\n");
for (i = 0; i < n; i++)
printf("%12.4f%s", x[i], (i%3 == 2 || i == n-1)?"\n":" ");
if (fail.code != NE_NOERROR)
exit_status = 2;
END:
NAG_FREE(diag);
NAG_FREE(fjac);
NAG_FREE(fvec);
NAG_FREE(qtf);
NAG_FREE(r);
NAG_FREE(x);
NAG_FREE(iwsav);
NAG_FREE(rwsav);
return exit_status;
}
static void NAG_CALL fcn(Integer n, const double x[], double fvec[],
double fjac[], Integer irevcm)
{
Integer j, k;
if (irevcm == 2)
{
for (k = 0; k < n; k++)
{
fvec[k] = (3.0-x[k]*2.0) * x[k] + 1.0;
if (k > 0) fvec[k] -= x[k-1];
if (k < n-1) fvec[k] -= x[k+1] * 2.0;
}
}
else if (irevcm == 3)
{
for (k = 0; k < n; k++)
{
for (j = 0; j < n; j++)
fjac[j*n + k] = 0.0;
fjac[k*n + k] = 3.0 - x[k] * 4.0;
if (k > 0)
fjac[(k-1)*n + k] = -1.0;
if (k < n-1)
fjac[(k+1)*n + k] = -2.0;
}
}
}