nag_opt_sparse_convex_qp_solve (e04nqc) Example Program Results Parameters ========== Files ----- Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6 Insert file............ 0 New basis file ........ 0 (Summary file)......... 0 Punch file............. 0 Backup basis file...... 0 Load file.............. 0 Dump file.............. 0 Frequencies ----------- Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100 Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000 LP/QP Parameters ---------------- Minimize............... QPsolver Cholesky...... Cold start............. Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000 Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1 Crash tolerance........ 0.100 Pivot tolerance........ 2.05E-11 Partial price.......... 1 Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section ( A) 7 Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 8 QP objective ------------ Objective variables.... 7 Hessian columns........ 7 Superbasics limit...... 7 Nonlin Objective vars.. 7 Unbounded step size.... 1.00E+20 Linear Objective vars.. 0 Miscellaneous ------------- LU factor tolerance.... 3.99 LU singularity tol..... 2.05E-11 Timing level........... 0 LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0 LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No Matrix statistics ----------------- Total Normal Free Fixed Bounded Rows 8 5 1 1 1 Columns 7 2 0 0 5 No. of matrix elements 48 Density 85.714 Biggest 1.0000E+00 (excluding fixed columns, Smallest 1.0000E-02 free rows, and RHS) No. of objective coefficients 7 Biggest 2.0000E+03 (excluding fixed columns) Smallest 2.0000E+02 Nonlinear constraints 0 Linear constraints 8 Nonlinear variables 7 Linear variables 0 Jacobian variables 0 Objective variables 7 Total constraints 8 Total variables 7 Itn 1: Feasible linear constraints E04NQT EXIT 0 -- finished successfully E04NQT INFO 1 -- optimality conditions satisfied Problem name No. of iterations 9 Objective value -1.8477846771E+06 No. of Hessian products 16 Objective row -2.9886903537E+06 Quadratic objective 1.1409056766E+06 No. of superbasics 2 No. of basic nonlinears 4 No. of degenerate steps 0 Percentage 0.00 Max x (scaled) 3 2.4E-01 Max pi (scaled) 6 4.7E+07 Max x 3 6.5E+02 Max pi 7 1.5E+04 Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 6 1.1E-08 Max Primal infeas 0 0.0E+00 Max Dual infeas 9 6.4E-12 Name Objective Value -1.8477846771E+06 Status Optimal Soln Iteration 9 Superbasics 2 Section 1 - Rows Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i 8 ..ROW1.. EQ 2000.00000 . 2000.00000 2000.00000 -12900.76766 1 9 ..ROW2.. BS 49.23160 -10.76840 None 60.00000 0.00000 2 10 ..ROW3.. UL 100.00000 . None 100.00000 -2324.86620 3 11 ..ROW4.. BS 32.07187 -7.92813 None 40.00000 . 4 12 ..ROW5.. BS 14.55719 -15.44281 None 30.00000 . 5 13 ..ROW6.. LL 1500.00000 . 1500.00000 None 14454.60290 6 14 ..ROW7.. LL 250.00000 . 250.00000 300.00000 14580.95432 7 15 ..COST.. BS -2988690.35370 -2988690.35370 None None -1.0 8 Section 2 - Columns Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j 1 ...X1... LL . -200.00000 . 200.00000 2360.67253 9 2 ...X2... BS 349.39923 -1301.20153 . 2500.00000 -0.00000 10 3 ...X3... SBS 648.85342 -356.59829 400.00000 800.00000 0.00000 11 4 ...X4... SBS 172.84743 -356.59829 100.00000 700.00000 -0.00000 12 5 ...X5... BS 407.52089 -1184.95822 . 1500.00000 -0.00000 13 6 ...X6... BS 271.35624 1242.75804 . None -0.00000 14 7 ...X7... BS 150.02278 1242.75804 . None 0.00000 15 Final objective value = -1.848e+06 Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02