GO05 — Random Number Generators GO05XDF

NAG Library Routine Document
GOSXDF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

GO5XDF computes scaled increments of sample paths of a free or non-free Wiener process, where the
sample paths are constructed by a Brownian bridge algorithm. The initialization routine GO5XCF must be
called prior to the first call to GO5SXDF.

2 Specification

SUBROUTINE GO5XDF (NPATHS, RCORD, D, A, DIFF, 2z, LDZ, C, LDC, B, LDB, &
RCOMM, IFAIL)

INTEGER NPATHS, RCORD, D, A, LDZ, LDC, LDB, IFAIL
REAL (KIND=nag_wp) DIFF(D), Z(LDZ,*), C(LDC,*), B(LDB,*), RCOMM(*)

3 Description

For details on the Brownian bridge algorithm and the bridge construction order see Section 2.6 in the GO5
Chapter Introduction and Section 3 in GO5SXCF. Recall that the terms Wiener process (or free Wiener
process) and Brownian motion are often used interchangeably, while a non-free Wiener process (also
known as a Brownian bridge process) refers to a process which is forced to terminate at a given point.

Fix two times ¢y < T, let (t;), ;< be any set of time points satisfying ¢, <?; <t, <--- <ty <T, and

let X, , (th) Xr denote a d-dimensional Wiener sample path at these time points.

1<i<N?

The Brownian bridge increments generator uses the Brownian bridge algorithm to construct sample paths
for the (free or non-free) Wiener process X, and then uses this to compute the scaled Wiener increments

Xy — Xy Xi, — Xy Xy =X, X = Xy,
t =ty th—t; T iy —tny | T —ty

The example program in Section 9 shows how these increments can be used to compute a numerical
solution to a stochastic differential equation (SDE) driven by a (free or non-free) Wiener process.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Parameters

Note: the following variable is used in the parameter descriptions: N = NTIMES, the length of the array
TIMES passed to the initialization routine GO5XCF.

1: NPATHS — INTEGER Input
On entry: the number of Wiener sample paths.

Constraint: NPATHS > 1.

2: RCORD — INTEGER Input

On entry: the order in which Normal random numbers are stored in Z and in which the generated
values are returned in B.

Constraint: RCORD =1 or 2.

Mark 24 GO5XDF.1

GO5XDF NAG Library Manual

10:

D — INTEGER Input
On entry: the dimension of each Wiener sample path.

Constraint: D > 1.

A — INTEGER Input
On entry: if A =0, a free Wiener process is created and DIFF is ignored.

If A =1, a non-free Wiener process is created where DIFF is the difference between the terminal
value and the starting value of the process.

Constraint: A =0 or 1.

DIFF(D) — REAL (KIND=nag_wp) array Input
On entry: the difference between the terminal value and starting value of the Wiener process. If
A =0, DIFF is ignored.

Z(LDZ,x) — REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least NPATHS if RCORD =1 and at least
Dx (N+1—A) if RCORD = 2.

On entry: the Normal random numbers used to construct the sample paths.

If RCORD=1 and quasi-random numbers are used, the D x (N-+1—A), where
N = nint RCOMM)(2)-dimensional quasi-random points should be stored in successive columns
of Z.

If RCORD=2 and quasi-random numbers are used, the D x (N-+1—A), where
N = nint RCOMM(2)-dimensional quasi-random points should be stored in successive rows of Z.

On exit: the Normal random numbers premultiplied by C.

LDZ — INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which GOSXDF is
called.

Constraints:

if RCORD =1, LDZ>D x (N + 1 —A);

if RCORD =2, LDZ > NPATHS.
C(LDC,*) — REAL (KIND=nag_wp) array Input
Note: the second dimension of the array C must be at least D.

On entry: the lower triangular Cholesky factorization C' such that CC" gives the covariance matrix
of the Wiener process. Elements of C above the diagonal are not referenced.
LDC — INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which GOSXDF is
called.

Constraint: LDC > D.

B(LDB,*) — REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least NPATHS if RCORD = 1 and at least
D x (N 4 1) if RCORD = 2.

On exit: the scaled Wiener increments.

Let X;,fﬁi denote the kth dimension of the ith point of the pth sample path where 1 < k <D,
1<i<N+1and 1l <p<NPATHS.

GO5XDF.2 Mark 24

GO05 — Random Number Generators GO05XDF

11:

12:

6

(X — Xpi1)
If RCORD = 1, the increment ﬁ will be stored at B(k+ (i — 1) x D, p).
i — lie1
(in _ in_l)
If RCORD = 2, the increment ﬁ will be stored at B(p,k+ (i — 1) x D).
i —lie1
LDB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which GOSXDF is
called.

Constraints:

if RCORD =1, LDB > D x (N + 1);

if RCORD =2, LDB > NPATHS.
RCOMM(*) — REAL (KIND=nag_wp) array Communication Array
On entry: communication array as returned by the last call to GOSXCF or GOSXDF. This array
must not be directly modified.
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

On entry, RCOMM was not initialized or has been corrupted. On entry, RCOMM was not initialized
or has been corrupted. On entry, RCOMM was not initialized or has been corrupted.

IFAIL =2

On entry, NPATHS = (value).
Constraint: NPATHS > 1.

IFAIL =3

On entry, the value of RCORD is invalid.

IFAIL =4

On entry, D = (value).
Constraint: D > 1.

IFAIL =5

On entry, A = (value).
Constraint: A =0 or 1.

Mark 24 GO5XDF.3

GO5XDF NAG Library Manual

IFAIL =6

On entry, LDZ = (value) and D x (NTIMES + 1 — A) = (value).
Constraint: LDZ > D x (NTIMES + 1 — A).

On entry, LDZ = (value) and NPATHS = (value).
Constraint: LDZ > NPATHS.
IFAIL =7
On entry, LDC = (value).
Constraint: LDC > (value).
IFAIL = 8

On entry, LDB = (value) and D x (NTIMES + 1) = (value).
Constraint: LDB > D x (NTIMES + 1).

On entry, LDB = (value) and NPATHS = (value).
Constraint: LDB > NPATHS.
IFAIL = —999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

The scaled Wiener increments produced by this routine can be used to compute numerical solutions to
stochastic differential equations (SDEs) driven by (free or non-free) Wiener processes. Consider an SDE
of the form

dy, = f(t,Y,)dt+ o(t, Yy)dX,

on the interval [ty, 7] where (X;), .,p is a (free or non-free) Wiener process and f and o are suitable

functions. A numerical solution to this SDE can be obtained by the Euler—Maruyama method. For any
discretization ty < t; <ty < -+ < tyy =T of [ty,T], set

Y =Y A (Y (i —) +o(t V) (X, — Xy)

‘i

for i=1,...,N so that ¥; is an approximation to Y7. The scaled Wiener increments produced by
GO5XDF can be used in the Euler—Maruyama scheme outlined above by writing

Xi, — Xy,
Y., =Y.+ (tis1 — t;) (f(tiv Y,) +o(t,Y:) <t+]17—t>)
i+)
The following example program uses this method to solve the SDE for geometric Brownian motion
dSt — TStdt + O—Sf,dXt
where X is a Wiener process, and compares the results against the analytic solution
Sr = Soexp((r — 02/2)T + UXT).

Quasi-random variates are used to construct the Wiener increments.

GO05XDF.4 Mark 24

GO05 — Random Number Generators

9.1 Program Text
Program gO5xdfe
! GO5XDF Example Program Text
! Mark 24 Release. NAG Copyright 2012.
! .. Use Statements
Use nag_library, Only: g05xcf, g05xdf, gO5xef, nag_wp

! .. Implicit None Statement
Implicit None

GOSXDF

! .. Parameters

Integer, Parameter ::a =0, d=1, nout = 6, rcord = 2
! .. Local Scalars

Real (Kind=nag_wp) :: r, sO, sigma, tO, tend

Integer :: bgord, i, ifail, 1db, 1ldz, &

nmove, npaths, ntimesteps, p

! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: analytic(:), b(:,:), rcomm(:), &

st(:,:), t(:), times(:),

Real (Kind=nag_wp) :: ¢c(d) = (/1.0_nag_wp/)
Real (Kind=nag_wp) :: diff(d) = (/0.0_nag_wp/)
Integer, Allocatable :: move(:)

! .. Intrinsic Procedures
Intrinsic :: exp, real, size

! .. Executable Statements
ifail = 0

We wish to solve the stochastic differential equation (SDE)
dSt = r*Stxdt + sigmaxStxdXt

where X is a one dimensional Wiener process.

This means we have

A =0
D=1
c=1

! Initial value of the process
sO = 1.0_nag_wp
r = 0.05_nag_wp
sigma = 0.12_nag_wp
! Number of paths to simulate
npaths = 3
! The time interval [tO0,T] on which to solve the SDE
t0 = 0.0_nag_wp
tend = 1.0_nag_wp
! The time steps in the discretization of [tO,T]
ntimesteps = 20
Allocate (t(ntimesteps))
Do i = 1, ntimesteps
t(i) = t0 + i*(tend-t0)/real(ntimesteps+l,kind=nag_wp)
End Do

! Make the bridge construction order

nmove = 0
Allocate (times(ntimesteps) ,move (nmove))
bgord = 3

Call gO5xef(bgord,tO,tend,ntimesteps,t,nmove,move,times,ifail)

! Generate the input Z values and allocate memory for b
Call get_z(rcord,npaths,d,a,ntimesteps,z,b)

! Leading dimensions for the various input arrays
1ldz = size(z,1)
1db = size(b,1)

! Initialize the generator
Allocate (rcomm(1l2+*(ntimesteps+1)))
Call gO05xcf(t0O,tend,times,ntimesteps,rcomm,ifail)

! Get the scaled increments of the Wiener process

Mark 24

z(:

/:)

We now set the other parameters of the SDE and the Euler-Maruyama scheme

GO5XDF.5

GO5XDF NAG Library Manual

Call g05xdf (npaths,rcord,d,a,diff,z,1dz,c,d,b,1db,rcomm,ifail)
Do the Euler-Maruyama time stepping
Allocate (st(npaths,ntimesteps+1l),analytic(npaths))

Do first time step
st(:,1) = sO0 + (t(1)-t0)*(r*sO+sigma*sO*b(:,1))

Do i = 2, ntimesteps
Do p = 1, npaths
st(p,1i) = st(p,i-1) + (t(i)-t(i-1))*(r*st(p,i-1)+sigma*st(p,i-1)*b(p &
(1))
End Do
End Do

Do last time step
st(:,1) = st(:,i-1) + (tend-t(i-1))*(r*st(:,i-1)+sigma*st(:,i-1)*b(:,1))

Compute the analytic solution:
ST = SO*exp((r-sigma**2/2)T + sigma WT)

analytic(:) = sO*exp((r-0.5_nag_wp*sigma*sigma)*tend+sigma*(tend-t0)*z(: &
;1))

Display the results
Call display_results(ntimesteps,npaths,st,analytic)

Contains

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

Use Statements
Use nag_library, Only: gO5yjf
Scalar Arguments

Integer, Intent (In) :: a, d, npaths, ntimes, rcord
Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
Local Scalars
Integer :: idim, ifail
Local Arrays
Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)
Intrinsic Procedures
Intrinsic :: transpose
Executable Statements
idim = d*(ntimes+1-a)

Allocate 7
If (rcord==1) Then
Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1) ,npaths))
Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))
End If

We now need to generate the input quasi-random points
First initialize the base pseudorandom number generator
seed(1l) = 1023401

Call initialize_prng(6,0,seed,state)

Scrambled quasi-random sequences preserve the good discrepancy
properties of quasi-random sequences while counteracting the bias
some applications experience when using quasi-random sequences.
Initialize the scrambled quasi-random generator.

Call initialize_scrambled_grng(l,2,idim,state,iref)

Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(l:idim) = 0.0_nag_wp

std(1l:idim) = 1.0_nag_wp

GO5XDF.6 Mark 24

GO05 — Random Number Generators

If (rcord==1) Then
Allocate (tz(npaths,idim))

ifail = 0
Call gO5yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)
Else
ifail = 0
Call gO5yjf(xmean,std,npaths,z,iref,ifail)
End If

End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,state)

Use Statements
Use nag_library, Only: gO5kff
Scalar Arguments

Integer, Intent (In) :: genid, subid
Array Arguments
Integer, Intent (In) :: seed(:)
Integer, Allocatable, Intent (Out) :: state(:)
Local Scalars
Integer :: ifail, lseed, lstate

Executable Statements
lseed = size(seed, 1)

Initial call to initializer to get size of STATE array
lstate = 0

Allocate (state(lstate))

ifail = 0

Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_grng(genid,stype,idim,state,iref)

Use Statements
Use nag_library, Only: gO5ynf
Scalar Arguments

Integer, Intent (In) :: genid, idim, stype
Array Arguments

Integer, Allocatable, Intent (Out) 1 diref (:)

Integer, Intent (Inout) :: state(:)

Local Scalars

GOSXDF

Integer :: ifail, iskip, liref, nsdigits

Executable Statements
liref = 32xidim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0

Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)
End Subroutine initialize_scrambled_qgrng

Subroutine display_results(ntimesteps,npaths,st,analytic)

Mark 24

Scalar Arguments

Integer, Intent (In) :: npaths, ntimesteps
Array Arguments

Real (Kind=nag_wp), Intent (In) :: analytic(:), st(:,:)
Local Scalars

Integer :: i, p

Executable Statements
Write (nout,*) ’'GO5XDF Example Program Results’
Write (nout,*)

GO5XDF.7

GOSXDF

99999
99998

NAG Library Manual

Write (nout,*) ’'Euler-Maruyama solution for Geometric Brownian motion’

Write (nout,99999) (’'Path’,p,p=1,npaths)
Do i = 1, ntimesteps + 1
Write (nout,99998) i, st(:,1i)
End Do
Write (nout,*)

Write (nout,’(A)’) ’'Analytic solution at final time step’
Write (nout,99999) (’'Path’,p,p=1,npaths)
Write (nout,’ (4X,20(1X,F10.4))’) analytic(:)

Format (4X,20(5X,A,I2))
Format (1X,I2,1X,20(1X,F10.4))

End Subroutine display_results

End

Program gO05xdfe

9.2 Program Data

None.

9.3 Program Results

GO5XDF

Example Program Results

Euler-Maruyama solution for Geometric Brownian motion

WO JO U wN R

Analytic

Path 1 Path 2 Path 3
0.9668 1.0367 0.9992
0.9717 1.0254 1.0077
0.9954 1.0333 1.0098
0.9486 1.0226 0.9911
0.9270 1.0113 1.0630
0.8997 1.0127 1.0164
0.8955 1.0138 1.0771
0.8953 0.9953 1.0691
0.8489 1.0462 1.0484
0.8449 1.0592 1.0429
0.8158 1.0233 1.0625
0.7997 1.0384 1.0729
0.8025 1.0138 1.0725
0.8187 1.0499 1.0554
0.8270 1.0459 1.0529
0.7914 1.0294 1.0783
0.8076 1.0224 1.0943
0.8208 1.0359 1.0773
0.8190 1.0326 1.0857
0.8217 1.0326 1.1095
0.8084 0.9695 1.1389

solution at final time step
Path 1 Path 2 Path 3
0.8079 0.9685 1.1389

GO5XDF.8 (last) Mark 24

	G05XDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NPATHS
	RCORD
	D
	A
	DIFF
	Z
	LDZ
	C
	LDC
	B
	LDB
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

