NAG Library Routine Document F07BAF (DGBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F07BAF (DGBSV) computes the solution to a real system of linear equations

$$AX = B$$
,

where A is an n by n band matrix, with k_l subdiagonals and k_u superdiagonals, and X and B are n by r matrices.

2 Specification

```
SUBROUTINE FO7BAF (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, KL, KU, NRHS, LDAB, IPIV(N), LDB, INFO

REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
```

The routine may be called by its LAPACK name dgbsv.

3 Description

F07BAF (DGBSV) uses the LU decomposition with partial pivoting and row interchanges to factor A as A = PLU, where P is a permutation matrix, L is a product of permutation and unit lower triangular matrices with k_l subdiagonals, and U is upper triangular with $(k_l + k_u)$ superdiagonals. The factored form of A is then used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: $N \ge 0$.

2: KL – INTEGER Input

On entry: k_l , the number of subdiagonals within the band of the matrix A.

Constraint: $KL \ge 0$.

3: KU – INTEGER Input

On entry: k_n , the number of superdiagonals within the band of the matrix A.

Constraint: $KU \ge 0$.

Mark 24 F07BAF.1

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS ≥ 0 .

5: $AB(LDAB,*) - REAL (KIND=nag_wp)$ array

Input/Output

Note: the second dimension of the array AB must be at least max(1, N).

On entry: the n by n coefficient matrix A.

The matrix is stored in rows $k_l + 1$ to $2k_l + k_u + 1$; the first k_l rows need not be set, more precisely, the element A_{ij} must be stored in

$$AB(k_l + k_u + 1 + i - j, j) = A_{ij}$$
 for $max(1, j - k_u) \le i \le min(n, j + k_l)$.

See Section 8 for further details.

On exit: if INFO > 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U, with $k_l + k_u$ superdiagonals, is stored in rows 1 to $k_l + k_u + 1$ of the array, and the multipliers used to form the matrix L are stored in rows $k_l + k_u + 2$ to $2k_l + k_u + 1$.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which F07BAF (DGBSV) is called.

Constraint: LDAB $\geq 2 \times KL + KU + 1$.

7: IPIV(N) – INTEGER array

Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P; at the ith step row i of the matrix was interchanged with row IPIV(i). IPIV(i) = i indicates a row interchange was not required.

8: B(LDB,*) - REAL (KIND=nag wp) array

Input/Output

Note: the second dimension of the array B must be at least max(1, NRHS).

On entry: the n by r right-hand side matrix B.

On exit: if INFO = 0, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BAF (DGBSV) is called.

Constraint: LDB $\geq \max(1, N)$.

10: INFO – INTEGER

Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = -i, the *i*th argument had an illegal value. An explanatory message is output, and execution of the program is terminated.

F07BAF.2 Mark 24

INFO > 0

If INFO = i, u_{ii} is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, \hat{x} , satisfies an equation of the form

$$(A+E)\hat{x}=b$$
,

where

$$||E||_1 = O(\epsilon)||A||_1$$

and ϵ is the *machine precision*. An approximate error bound for the computed solution is given by

$$\frac{\|\hat{x} - x\|_1}{\|x\|_1} \le \kappa(A) \frac{\|E\|_1}{\|A\|_1},$$

where $\kappa(A) = ||A^{-1}||_1 ||A||_1$, the condition number of A with respect to the solution of the linear equations. See Section 4.4 of Anderson *et al.* (1999) for further details.

Following the use of F07BAF (DGBSV), F07BGF (DGBCON) can be used to estimate the condition number of A and F07BHF (DGBRFS) can be used to obtain approximate error bounds. Alternatives to F07BAF (DGBSV), which return condition and error estimates directly are F04BBF and F07BBF (DGBSVX).

8 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n = 6, $k_l = 1$, and $k_u = 2$. Storage of the band matrix A in the array AB:

Array elements marked * need not be set and are not referenced by the routine. Array elements marked + need not be set, but are defined on exit from the routine and contain the elements u_{14} , u_{25} and u_{36} .

The total number of floating point operations required to solve the equations AX = B depends upon the pivoting required, but if $n \gg k_l + k_u$ then it is approximately bounded by $O(nk_l(k_l + k_u))$ for the factorization and $O(n(2k_l + k_u)r)$ for the solution following the factorization.

The complex analogue of this routine is F07BNF (ZGBSV).

9 Example

This example solves the equations

$$Ax = b$$

where A is the band matrix

$$A = \begin{pmatrix} -0.23 & 2.54 & -3.66 & 0 \\ -6.98 & 2.46 & -2.73 & -2.13 \\ 0 & 2.56 & 2.46 & 4.07 \\ 0 & 0 & -4.78 & -3.82 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 4.42 \\ 27.13 \\ -6.14 \\ 10.50 \end{pmatrix}.$$

Details of the LU factorization of A are also output.

Mark 24 F07BAF.3

F07BAF NAG Library Manual

9.1 Program Text

```
Program f07bafe
      FO7BAF Example Program Text
!
1
      Mark 24 Release. NAG Copyright 2012.
      .. Use Statements ..
      Use nag_library, Only: dgbsv, nag_wp, x04cef
!
      .. Implicit None Statement ..
      Implicit None
!
      .. Parameters ..
      Integer, Parameter
                                        :: nin = 5, nout = 6
      .. Local Scalars ..
!
      Integer
                                        :: i, ifail, info, j, k, kl, ku, ldab, n
      .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:)
      Integer, Allocatable
                                        :: ipiv(:)
!
      .. Intrinsic Procedures ..
      Intrinsic
                                        :: max, min
!
      .. Executable Statements ..
      Write (nout,*) 'F07BAF Example Program Results'
      Write (nout,*)
1
      Skip heading in data file
      Read (nin,*)
      Read (nin,*) n, kl, ku
      ldab = 2*kl + ku + 1
      Allocate (ab(ldab,n),b(n),ipiv(n))
      Read the band matrix A and the right hand side b from data file
      k = kl + ku + 1
      Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
      Read (nin,*) b(1:n)
      Solve the equations Ax = b for x
      The NAG name equivalent of dgbsv is f07baf
      Call dgbsv(n,kl,ku,1,ab,ldab,ipiv,b,n,info)
      If (info==0) Then
        Print solution
        Write (nout,*) 'Solution'
        Write (nout,99999) b(1:n)
       Print details of the factorization
        Write (nout,*)
        Flush (nout)
!
        ifail: behaviour on error exit
               =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call x04cef(n,n,kl,kl+ku,ab,ldab,'Details of factorization',ifail)
       Print pivot indices'
        Write (nout,*)
        Write (nout,*) 'Pivot indices'
        Write (nout,99998) ipiv(1:n)
        Write (nout,99997) 'The (', info, ',', info, ')', & ' element of the factor U is zero'
      End If
```

F07BAF.4 Mark 24

```
99999 Format ((3X,7F11.4))
99998 Format ((3X,7I11))
99997 Format (1X,A,I3,A,I3,A,A)
End Program f07bafe
```

9.2 Program Data

FO7BAF Example Program Data

4 1	2			:Values	of N ,	KL and KU	
		-2.73 2.46	4.07	:End of	matrix	x A	
4.42	27.13	-6.14	10.50	:End of	vector	В	

9.3 Program Results

FO7BAF Example Program Results

Solut	ion -2.0000	3.0000	1.0000	-4.0000					
Details of factorization									
	1	2	3	4					
1	-6.9800	2.4600	-2.7300	-2.1300					
2	0.0330	2.5600	2.4600	4.0700					
3		0.9605	- 5.9329	-3.8391					
4			0.8057	-0.7269					
Pivot indices									
FIVUC	2	3	3	4					

Mark 24 F07BAF.5 (last)