
NAG Library Routine Document

D02NEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02NEF is a routine for integrating stiff systems of implicit ordinary differential equations coupled with
algebraic equations.

2 Specification

SUBROUTINE D02NEF (NEQ, T, TOUT, Y, YDOT, RTOL, ATOL, ITASK, RES, JAC,
ICOM, COM, LCOM, IUSER, RUSER, IFAIL)

&

INTEGER NEQ, ITASK, ICOM(50+NEQ), LCOM, IUSER(*), IFAIL

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RTOL(*), ATOL(*),
COM(LCOM), RUSER(*)

&

EXTERNAL RES, JAC

3 Description

D02NEF is a general purpose routine for integrating the initial value problem for a stiff system of implicit
ordinary differential equations with coupled algebraic equations written in the form

F t; y; y0
� �

¼ 0.

D02NEF uses the DASSL implementation of the Backward Differentiation Formulae (BDF) of orders one
to five to solve a system of the above form for y (Y) and y0 (YDOT). Values for Y and YDOT at the
initial time must be given as input. These values must be consistent, (i.e., if T, Y, YDOT are the given
initial values, they must satisfy F T;Y;YDOTð Þ ¼ 0). The routine solves the system from t ¼ T to
t ¼ TOUT.

An outline of a typical calling program for D02NEF is given below. It calls the DASSL implementation of
the BDF integrator setup routine D02MWF and the banded matrix setup routine D02NPF (if required),
and, if the integration needs to proceed, calls D02MCF before continuing the integration.

! Declarations

EXTERNAL RES, JAC
.
.
.

! Initialize the integrator
CALL D02MWF(...)

! Is the Jacobian matrix banded?
IF (BANDED) CALL D02NPF(...)

! Set DT to the required temporal resolution
! Set TEND to the final time
! Call the integrator for each temporal value:
1000 CALL D02NEF(...,RES,JAC,...)
! Continue integration?

IF (TOUT.LT.TEND .AND. ITASK.GE.0) THEN
IF (ITASK.NE.1) TOUT = MIN(TOUT+DT,TEND)

! Print solution
CALL D02MCF(...)
GO TO 1000

ENDIF
.

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.1

.

.

4 References

None.

5 Parameters

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations to be solved.

Constraint: NEQ � 1.

2: T – REAL (KIND=nag_wp) Input/Output

On initial entry: the initial value of the independent variable, t.

On intermediate exit: t, the current value of the independent variable.

On final exit: the value of the independent variable at which the computed solution y is returned
(usually at TOUT).

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of t at which a computed solution is desired.

On initial entry: TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT 6¼ T.

4: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the vector of initial values of the dependent variables y.

On intermediate exit: the computed solution vector, y, evaluated at t ¼ T .

On final exit: the computed solution vector, evaluated at t (usually t ¼ TOUT).

5: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: YDOT must contain approximations to the time derivatives y0 of the vector y
evaluated at the initial value of the independent variable.

On exit: the time derivatives y0 of the vector y at the last integration point.

6: RTOLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RTOL depends on the value of ITOL as set in D02MWF; it must
be at least NEQ if ITOL ¼ :TRUE: and at least 1 if ITOL ¼ :FALSE:.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0, for i ¼ 1; 2; . . . ; n

where n ¼ NEQ when ITOL ¼ :TRUE: and n ¼ 1 otherwise.

On exit: RTOL remains unchanged unless D02NEF exits with IFAIL ¼ 16 in which case the values
may have been increased to values estimated to be appropriate for continuing the integration.

D02NEF NAG Library Manual

D02NEF.2 Mark 24

7: ATOLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array ATOL depends on the value of ITOL as set in D02MWF; it must
be at least NEQ if ITOL ¼ :TRUE: and at least 1 if ITOL ¼ :FALSE:.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0, for i ¼ 1; 2; . . . ; n

where n ¼ NEQ when ITOL ¼ :TRUE: and n ¼ 1 otherwise.

On exit: ATOL remains unchanged unless D02NEF exits with IFAIL ¼ 16 in which case the values
may have been increased to values estimated to be appropriate for continuing the integration.

8: ITASK – INTEGER Input/Output

On initial entry: need not be set.

On exit: the task performed by the integrator on successful completion or an indicator that a problem
occurred during integration.

ITASK ¼ 2
The integration to TOUT was successfully completed (T ¼ TOUT) by stepping exactly to
TOUT.

ITASK ¼ 3
The integration to TOUT was successfully completed (T ¼ TOUT) by stepping past TOUT.
Y and YDOT are obtained by interpolation.

ITASK < 0
Different negative values of ITASK returned correspond to different failure exits. IFAIL
should always be checked in such cases and the corrective action taken where appropriate.

ITASK must remain unchanged between calls to D02NEF.

9: RES – SUBROUTINE, supplied by the user. External Procedure

RES must evaluate the residual

R ¼ F t; y; y0
� �

.

The specification of RES is:

SUBROUTINE RES (NEQ, T, Y, YDOT, R, IRES, IUSER, RUSER)

INTEGER NEQ, IRES, IUSER(*)

REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), R(NEQ), RUSER(*)

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.3

5: RðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NEQ where

R ¼ F T;Y;YDOTð Þ.

6: IRES – INTEGER Input/Output

On entry: is always equal to zero.

On exit: IRES should normally be left unchanged. However, if an illegal value of Y is
encountered, IRES should be set to �1; D02NEF will then attempt to resolve the problem
so that illegal values of Y are not encountered. IRES should be set to �2 if you wish to
return control to the calling (sub)routine; this will cause D02NEF to exit with IFAIL ¼ 23.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RES is called with the parameters IUSER and RUSER as supplied to D02NEF. You are
free to use the arrays IUSER and RUSER to supply information to RES as an alternative
to using COMMON global variables.

RES must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NEF is called. Parameters denoted as Input must not be changed by
this procedure.

10: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

Evaluates the matrix of partial derivatives, J , where

Jij ¼
@Fi
@yj
þ CJ� @Fi

@y0j
, i; j ¼ 1; 2; . . . ;NEQ.

If this option is not required, the actual argument for JAC must be the dummy routine D02NEZ.
(D02NEZ is included in the NAG Library.) You must indicate to the integrator whether this option
is to be used by setting the parameter JCEVAL appropriately in a call to the setup routine D02MWF.

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, YDOT, PD, CJ, IUSER, RUSER)

INTEGER NEQ, IUSER(*)

REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), PD(*), CJ, RUSER(*)

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: PDð�Þ – REAL (KIND=nag_wp) array Input/Output

On entry: PD is preset to zero before the call to JAC.

On exit: if the Jacobian is full then PDð i� jð Þ � NEQþ iÞ ¼ Jij, for i ¼ 1; 2; . . . ;NEQ
and j ¼ 1; 2; . . . ;NEQ; if the Jacobian is banded then

D02NEF NAG Library Manual

D02NEF.4 Mark 24

PDð j� 1ð Þ � NEQþMLþMUþ i� jÞ ¼ Jij, for
max 1; j�MUð Þ � i � min n; jþMLð Þ; (see also in F07BDF (DGBTRF)).

6: CJ – REAL (KIND=nag_wp) Input

On entry: CJ is a scalar constant which will be defined in D02NEF.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

JAC is called with the parameters IUSER and RUSER as supplied to D02NEF. You are
free to use the arrays IUSER and RUSER to supply information to JAC as an alternative
to using COMMON global variables.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NEF is called. Parameters denoted as Input must not be changed by
this procedure.

11: ICOMð50þ NEQÞ – INTEGER array Communication Array

ICOM contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

ICOMð22Þ
The order of the method to be attempted on the next step.

ICOMð23Þ
The order of the method used on the last step.

ICOMð26Þ
The number of steps taken so far.

ICOMð27Þ
The number of calls to RES so far.

ICOMð28Þ
The number of evaluations of the matrix of partial derivatives needed so far.

ICOMð29Þ
The total number of error test failures so far.

ICOMð30Þ
The total number of convergence test failures so far.

12: COMðLCOMÞ – REAL (KIND=nag_wp) array Communication Array

COM contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

COMð3Þ
The step size to be attempted on the next step.

COMð4Þ
The current value of the independent variable, i.e., the farthest point integration has reached.
This will be different from T only when interpolation has been performed (ITASK ¼ 3).

13: LCOM – INTEGER Input

On entry: the dimension of the array COM as declared in the (sub)program from which D02NEF is
called.

Constraint: LCOM � 40þ maxorderþ 4ð Þ � NEQþ NEQ� pþ q where maxorder is the
maximum order that can be used by the integration method (see MAXORD in D02MWF);
p ¼ NEQ when the Jacobian is full and p ¼ 2�MLþMUþ 1ð Þ when the Jacobian is banded;
and, q ¼ NEQ= MLþMUþ 1ð Þð Þ þ 1 when the Jacobian is to be evaluated numerically and q ¼ 0
otherwise.

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.5

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02NEF, but are passed directly to RES and JAC and may be
used to pass information to these routines as an alternative to using COMMON global variables.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: D02NEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1

IFAIL ¼ 3

On entry, TOUT ¼ T,
or TOUT is too close to T to start integration,
or TOUT is behind T in the direction of H0 (see D02MWF),

IFAIL ¼ 6

On entry, RTOL ið Þ < 0:0, for i ¼ 1; 2; . . . ; n, where n ¼ NEQ when ITOL ¼ 1 and n ¼ 1
otherwise,

or RTOL ið Þ ¼ ATOL ið Þ ¼ 0:0 for all relevant i.

IFAIL ¼ 7

On entry, ATOL ið Þ < 0:0, for i ¼ 1; 2; . . . ; n, where n ¼ NEQ when ITOL ¼ 1 and n ¼ 1
otherwise.

IFAIL ¼ 8

On entry, a previous call to this routine returned ITASK < 0 and IFAIL 6¼ 0, but no appropriate
action was taken. For example, if a call returns with IFAIL ¼ 15 (ITASK ¼ �1) then a
call to D02MCF must be made prior to making a continuation call to D02NEF.

IFAIL ¼ 12

Either the initialization routine D02MWF has not been called prior to the first call of this routine or
one of the communication arrays ICOM, COM has become corrupted.

D02NEF NAG Library Manual

D02NEF.6 Mark 24

IFAIL ¼ 13

On entry, LCOM < 40þ maxorderþ 4ð Þ � NEQþ NEQ� NEQ, and the Jacobian is full;
or LCOM < 40þ maxorderþ 4ð Þ � NEQþ NEQ� 2�MLþMUþ 1ð Þ þ q, and the Ja-

cobian is banded,

where maxorder is the maximum order of the integration method to be used, and
q ¼ NEQ= MLþMUþ 1ð Þð Þ þ 1 when the Jacobian is to be evaluated numerically and q ¼ 0
otherwise.

IFAIL ¼ 15

The maximum number of steps (500) has been taken on this call and the integration has not reached
TOUT. The integration can proceed by calling D02MCF prior to calling D02NEF again; this will
reset the step counter to zero.

IFAIL ¼ 16

Too much accuracy was requested for the precision of the machine. On output RTOL and ATOL
were increased by an appropriate scale factor to prevent this error exit. Try running the problem
again with these scaled tolerances.

IFAIL ¼ 17

A purely relative tolerance was selected for a given solution component, but that solution
component has become zero and a pure relative error test is impossible for this component. Perhaps
an absolute tolerance requirement is also necessary for this component.

IFAIL ¼ 18

The error test failed repeatedly using the minimum stepsize and so the integration could not
proceed. If a (nonzero) minimum stepsize was specified in a call to D02MWF then either a
reduction in this minimum stepsize or in the specified tolerances should be considered.

IFAIL ¼ 19

The corrector step to obtain the approximate solution at the next time step repeatedly failed to
converge using the minimum stepsize. This may be due to an inconsistency between the system of
equations to be solved and initial conditions.

IFAIL ¼ 20

The iteration matrix (Jacobian) has become singular. Please check the Jacobian evaluations when
this is performed analytically. Also check for invalid solution values in the call to RES; these
should be flagged by returning IRES ¼ �1. This is probably due to an error in the analytic
evaluation of the Jacobian.

IFAIL ¼ 21

The corrector step could not converge and the error test failed repeatedly.

IFAIL ¼ 22

IRES was set to �1 during a call to RES and the problem could not be resolved.

IFAIL ¼ 23

IRES was set to �2 during a call to RES.

IFAIL ¼ 24

The initial YDOT could not be computed. This could happen because the initial approximation to
YDOT was very poor or because no YDOT exists that is consistent with the initial Y .

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.7

IFAIL ¼ 25

Repeated occurrences of input constraint violations have been detected. This could result in a
potential infinite loop.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the parameters RTOL and
ATOL. You are advised to use scalar error control unless the components of the solution are expected to
be poorly scaled. For the type of decaying solution typical of many stiff problems, relative error control
with a small absolute error threshold will be most appropriate (that is, you are advised to choose ITOL ¼ 0
with ATOLð1Þ small but positive).

8 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For banded systems the cost is proportional to

NEQ� MLþMUþ 1ð Þ2, while for full systems the cost is proportional to NEQ3. Note however that for
moderately sized problems which are only mildly nonlinear the cost may be dominated by factors

proportional to NEQ� MLþMUþ 1ð Þ and NEQ2 respectively.

9 Example

For this routine two examples are presented. There is a single example program for D02NEF, with a main
program and the code to solve the two example problems given in Example 1 (EX1) and Example 2
(EX2).

Example 1 (EX1)

This example solves the well-known stiff Robertson problem written in implicit form

r1 ¼ �0:04a þ 1:0E4bc � a0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 over the range 0; 0:1½ � the BDF method (setup routine
D02MWF and D02NPF).

Example 2 (EX2)

This example illustrates the use of D02NEF to solve a simple algebraic problem by continuation. The
equation 4� 2yþ 0:1eyt ¼ 0 from t ¼ 0 (where y ¼ 2) to t ¼ 1.

9.1 Program Text

! D02NEF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d02nefe_mod

! D02NEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter :: ml = 1, mu = 2, neq1 = 3, &

D02NEF NAG Library Manual

D02NEF.8 Mark 24

neq2 = 1, nin = 5, nout = 6
Contains

Subroutine myjac1(neq,ml,mu,t,y,ydot,pd,cj)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: ml, mu, neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: pd(2*ml+mu+1,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Local Scalars ..
Integer :: md, ms

! .. Executable Statements ..
! Main diagonal pdfull(i,i), i=1,neq

md = mu + ml + 1
pd(md,1) = -alpha - cj
pd(md,2) = -beta*y(3) - two*gamma*y(2) - cj
pd(md,3) = -cj

! 1 Sub-diagonal pdfull(i+1:i), i=1,neq-1
ms = md + 1
pd(ms,1) = alpha
pd(ms,2) = two*gamma*y(2)

! First super-diagonal pdfull(i-1,i), i=2, neq
ms = md - 1
pd(ms,2) = beta*y(3)
pd(ms,3) = -beta*y(2)

! Second super-diagonal pdfull(i-2,i), i=3, neq
ms = md - 2
pd(ms,3) = beta*y(2)

Return
End Subroutine myjac1
Subroutine myjac2(neq,t,y,ydot,pd,cj)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: pd(neq*neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
pd(1) = -two*y(1) + 0.1E0_nag_wp*t*y(1)*exp(y(1))

Return
End Subroutine myjac2

Subroutine res1(neq,t,y,ydot,r,ires,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
r(1) = -alpha*y(1) + beta*y(2)*y(3) - ydot(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) - ydot(2)
r(3) = gamma*y(2)*y(2) - ydot(3)
Return

End Subroutine res1
Subroutine jac1(neq,t,y,ydot,pd,cj,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: d02nez

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.9

Integer, Intent (In) :: neq
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Inout) :: pd(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: ijac, ml, mu

! .. Executable Statements ..
ml = iuser(1)
mu = iuser(2)
ijac = iuser(3)

If (ijac==1) Then
Call myjac1(neq,ml,mu,t,y,ydot,pd,cj)

Else
Call d02nez(neq,t,y,ydot,pd,cj,iuser,ruser)

End If

Return
End Subroutine jac1
Subroutine res2(neq,t,y,ydot,r,ires,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
r(1) = 4.0_nag_wp - y(1)**2 + t*0.1E0_nag_wp*exp(y(1))
Return

End Subroutine res2
Subroutine jac2(neq,t,y,ydot,pd,cj,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: d02nez

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: pd(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: ijac

! .. Executable Statements ..
ijac = iuser(1)

If (ijac==1) Then
Call myjac2(neq,t,y,ydot,pd,cj)

Else
Call d02nez(neq,t,y,ydot,pd,cj,iuser,ruser)

End If

Return
End Subroutine jac2

End Module d02nefe_mod
Program d02nefe

! D02NEF Example Main Program

! .. Use Statements ..
Use d02nefe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..

D02NEF NAG Library Manual

D02NEF.10 Mark 24

Write (nout,*) ’D02NEF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d02mcf, d02mwf, d02nef, d02npf, nag_wp
Use d02nefe_mod, Only: jac1, ml, mu, neq1, nin, res1

! .. Local Scalars ..
Real (Kind=nag_wp) :: h0, hmax, t, tout
Integer :: i, ifail, ijac, itask, itol, &

j, lcom, licom, maxord, neq
Character (8) :: jceval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), com(:), rtol(:), &

y(:), ydot(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icom(:)
Integer :: iuser(3)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’D02NEF Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord
neq = neq1
lcom = 40 + (maxord+4)*neq + (2*ml+mu+1)*neq + 2*(neq/(ml+mu+1)+1)
licom = 50 + neq
Allocate (atol(neq),com(lcom),rtol(neq),y(neq),ydot(neq),icom(licom))
Read (nin,*) ijac, itol
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)
Read (nin,*) ydot(1:neq)
If (ijac==1) Then

jceval = ’Analytic’
Else

jceval = ’Numeric’
End If

! Set initial values
Read (nin,*) y(1:neq)

! Initialize the problem, specifying that the Jacobian is to be
! evaluated analytically using the provided routine jac.

Read (nin,*) hmax, h0
Read (nin,*) t, tout

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02mwf(neq,maxord,jceval,hmax,h0,itol,icom,licom,com,lcom,ifail)

! Specify that the Jacobian is banded.

ifail = 0
Call d02npf(neq,ml,mu,icom,licom,ifail)

! Use the iuser array to pass the band dimensions through to jac.
! An alternative would be to hard code values for ml and mu in jac.

iuser(1) = ml
iuser(2) = mu
iuser(3) = ijac

Write (nout,99999)(i,i=1,neq)
Write (nout,99998) t, (y(i),i=1,neq)
itask = 0

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.11

! Obtain the solution at 5 equally spaced values of T.

loop: Do j = 1, 5
ifail = -1
Call d02nef(neq,t,tout,y,ydot,rtol,atol,itask,res1,jac1,icom,com, &

lcom,iuser,ruser,ifail)
Write (nout,99998) t, (y(i),i=1,neq)
If (ifail/=0) Then

Write (nout,99997) ifail
Exit loop

End If
tout = tout + 0.02_nag_wp
Call d02mcf(icom)

End Do loop

Write (nout,*)
Write (nout,99996) itask

99999 Format (/1X,’ t ’,5X,3(’ Y(’,I1,’) ’))
99998 Format (1X,F8.4,3X,3(F12.6))
99997 Format (1X,’ ** D02NEF returned with IFAIL = ’,I5)
99996 Format (1X,’The integrator completed task, ITASK = ’,I4)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02mcf, d02mwf, d02nef, nag_wp
Use d02nefe_mod, Only: jac2, neq2, nin, res2

! .. Local Scalars ..
Real (Kind=nag_wp) :: h0, hmax, t, tout
Integer :: i, ifail, ijac, itask, itol, &

j, lcom, licom, maxord, neq
Character (8) :: jceval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), com(:), rtol(:), &

y(:), ydot(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icom(:)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’D02NEF Example 2’
Write (nout,*)
Read (nin,*)
Read (nin,*) maxord
neq = neq2
lcom = 40 + (maxord+4)*neq + neq*neq
licom = 50 + neq
Allocate (atol(neq),com(lcom),rtol(neq),y(neq),ydot(neq),icom(licom))
Read (nin,*) ijac, itol
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)
Read (nin,*) ydot(1:neq)
If (ijac==1) Then

jceval = ’Analytic’
Else

jceval = ’Numeric’
End If

! Initialize the problem, specifying that the Jacobian is to be
! evaluated analytically using the provided routine jac.

Read (nin,*) y(1:neq)
Read (nin,*) hmax, h0
Read (nin,*) t, tout

ifail = 0
Call d02mwf(neq,maxord,jceval,hmax,h0,itol,icom,licom,com,lcom,ifail)

! Use the iuser array to pass whether numerical or analytic Jacobian

D02NEF NAG Library Manual

D02NEF.12 Mark 24

! is to be used.

iuser(1) = ijac

Write (nout,99999)(i,i=1,neq)
Write (nout,99998) t, y(1:neq)
itask = 0

! Obtain the solution at 5 equally spaced values of t.

loop: Do j = 1, 5

ifail = -1
Call d02nef(neq,t,tout,y,ydot,rtol,atol,itask,res2,jac2,icom,com, &

lcom,iuser,ruser,ifail)

Write (nout,99998) t, y(1:neq)
If (ifail/=0) Then

Write (nout,99997) ifail
Exit loop

End If
tout = tout + 0.2_nag_wp
Call d02mcf(icom)

End Do loop

Write (nout,*)
Write (nout,99996) itask

99999 Format (/1X,’ t y(’,I1,’)’)
99998 Format (1X,F8.4,3X,3(F12.6))
99997 Format (1X,’ ** D02NEF returned with IFAIL = ’,I5)
99996 Format (1X,’The integrator completed task, ITASK = ’,I4)

End Subroutine ex2
End Program d02nefe

9.2 Program Data

D02NEF Example Program Data
5 : ex1 : maxord
1 1 : ijac, itol
1.0E-3 1.0E-3 1.0E-3 : rtol
1.0E-6 1.0E-6 1.0E-6 : atol
0.0 0.0 0.0 : ydot
1.0 0.0 0.0 : y
0.0 0.0 : hmax, h0
0.0 0.02 : t, tout

5 : ex2 : maxord
1 1 : ijac, itol
0.0 : rtol
1.0E-8 : atol
0.0 : ydot
2.0 : y
0.0 0.0 : hmax, h0
0.0 0.2 : t, tout

9.3 Program Results

D02NEF Example Program Results

D02NEF Example 1

t Y(1) Y(2) Y(3)
0.0000 1.000000 0.000000 0.000000
0.0200 0.999204 0.000036 0.000760
0.0400 0.998415 0.000036 0.001549
0.0600 0.997631 0.000036 0.002333
0.0800 0.996852 0.000036 0.003112
0.1000 0.996080 0.000036 0.003884

D02 – Ordinary Differential Equations D02NEF

Mark 24 D02NEF.13

The integrator completed task, ITASK = 3

D02NEF Example 2

t y(1)
0.0000 2.000000
0.2000 2.038016
0.4000 2.078379
0.6000 2.121462
0.8000 2.167736
1.0000 2.217821

The integrator completed task, ITASK = 3

D02NEF NAG Library Manual

D02NEF.14 (last) Mark 24

	D02NEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NEQ
	T
	TOUT
	Y
	YDOT
	RTOL
	ATOL
	ITASK
	RES
	NEQ in subprogram RES
	T in subprogram RES
	Y in subprogram RES
	YDOT in subprogram RES
	R in subprogram RES
	IRES in subprogram RES
	IUSER in subprogram RES
	RUSER in subprogram RES

	JAC
	NEQ in subprogram JAC
	T in subprogram JAC
	Y in subprogram JAC
	YDOT in subprogram JAC
	PD in subprogram JAC
	CJ in subprogram JAC
	IUSER in subprogram JAC
	RUSER in subprogram JAC

	ICOM
	COM
	LCOM
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=3
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=12
	IFAIL=13
	IFAIL=15
	IFAIL=16
	IFAIL=17
	IFAIL=18
	IFAIL=19
	IFAIL=20
	IFAIL=21
	IFAIL=22
	IFAIL=23
	IFAIL=24
	IFAIL=25

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

