NAG Library Chapter Contents ## **D01 - Quadrature** ## D01 Chapter Introduction | Routine
Name | Mark of
Introduction | Purpose | |-----------------|-------------------------|---| | D01AHF | 8 | nagf_quad_1d_fin_well
One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson,
suitable for well-behaved integrands | | D01AJF | 8 | nagf_quad_1d_fin_bad
One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens
and de Doncker, allowing for badly behaved integrands | | D01AKF | 8 | nagf_quad_1d_fin_osc
One-dimensional quadrature, adaptive, finite interval, method suitable for
oscillating functions | | D01ALF | 8 | nagf_quad_1d_fin_sing
One-dimensional quadrature, adaptive, finite interval, allowing for singularities
at user-specified break-points | | D01AMF | 8 | nagf_quad_1d_inf
One-dimensional quadrature, adaptive, infinite or semi-infinite interval | | D01ANF | 8 | nagf_quad_1d_fin_wtrig One-dimensional quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$ | | D01APF | 8 | nagf_quad_1d_fin_wsing
One-dimensional quadrature, adaptive, finite interval, weight function with
end-point singularities of algebraico-logarithmic type | | D01AQF | 8 | nagf_quad_1d_fin_wcauchy One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform) | | D01ARF | 10 | nagf_quad_1d_indef
One-dimensional quadrature, non-adaptive, finite interval with provision for
indefinite integrals | | D01ASF | 13 | nagf_quad_1d_inf_wtrig One-dimensional quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$ | | D01ATF | 13 | nagf_quad_1d_fin_bad_vec
One-dimensional quadrature, adaptive, finite interval, variant of D01AJF
efficient on vector machines | | D01AUF | 13 | nagf_quad_1d_fin_osc_vec
One-dimensional quadrature, adaptive, finite interval, variant of D01AKF
efficient on vector machines | | D01BAF | 7 | nagf_quad_withdraw_1d_gauss One-dimensional Gaussian quadrature Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D01BBF | 7 | nagf_quad_1d_gauss_wset Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule (deprecated) Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | |--------|----|--| | D01BCF | 8 | nagf_quad_1d_gauss_wgen
Calculation of weights and abscissae for Gaussian quadrature rules, general
choice of rule | | D01BDF | 8 | nagf_quad_1d_fin_smooth One-dimensional quadrature, non-adaptive, finite interval | | D01DAF | 5 | nagf_quad_2d_fin Two-dimensional quadrature, finite region | | D01EAF | 12 | nagf_quad_md_adapt_multi
Multidimensional adaptive quadrature over hyper-rectangle, multiple
integrands | | D01FBF | 8 | nagf_quad_md_gauss
Multidimensional Gaussian quadrature over hyper-rectangle | | D01FCF | 8 | nagf_quad_md_adapt Multidimensional adaptive quadrature over hyper-rectangle | | D01FDF | 10 | nagf_quad_md_sphere
Multidimensional quadrature, Sag–Szekeres method, general product region or
n-sphere | | D01GAF | 5 | nagf_quad_1d_data One-dimensional quadrature, integration of function defined by data values, Gill-Miller method | | D01GBF | 10 | nagf_quad_md_mcarlo
Multidimensional quadrature over hyper-rectangle, Monte-Carlo method | | D01GCF | 10 | nagf_quad_md_numth
Multidimensional quadrature, general product region, number-theoretic method | | D01GDF | 14 | nagf_quad_md_numth_vec
Multidimensional quadrature, general product region, number-theoretic
method, variant of D01GCF efficient on vector machines | | D01GYF | 10 | nagf_quad_md_numth_coeff_prime
Korobov optimal coefficients for use in D01GCF or D01GDF, when number
of points is prime | | D01GZF | 10 | nagf_quad_md_numth_coeff_2prime
Korobov optimal coefficients for use in D01GCF or D01GDF, when number
of points is product of two primes | | D01JAF | 10 | $nagf_quad_md_sphere_bad$ Multidimensional quadrature over an n -sphere, allowing for badly behaved integrands | | D01PAF | 10 | $nagf_quad_md_simplex$ Multidimensional quadrature over an n -simplex | | D01RAF | 24 | nagf_quad_1d_gen_vec_multi_rcomm
One-dimensional quadrature, adaptive, finite interval, multiple integrands,
vectorized abscissae, reverse communication | | D01RBF | 24 | nagf_quad_1d_gen_vec_multi_diagnostic Diagnostic routine for D01RAF | | D01RCF | 24 | nagf_quad_1d_gen_vec_multi_dimreq Determine required array dimensions for D01RAF | |--------|----|--| | D01RGF | 24 | nagf_quad_1d_fin_gonnet_vec
One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet,
allowing for badly behaved integrands | | D01TBF | 24 | nagf_quad_1d_gauss_wres
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted
choice of rule | | D01UAF | 24 | nagf_quad_1d_gauss_vec
One-dimensional Gaussian quadrature, choice of weight functions | | D01ZKF | 24 | nagf_quad_opt_set Option setting routine | | D01ZLF | 24 | nagf_quad_opt_get Option getting routine |