# Keyword : Integration, numerical

 D01AHF One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands D01AJF One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands D01AKF One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions D01ALF One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points D01AMF One-dimensional quadrature, adaptive, infinite or semi-infinite interval D01ANF One-dimensional quadrature, adaptive, finite interval, weight function $\mathrm{cos}\left(\omega x\right)$ or $\mathrm{sin}\left(\omega x\right)$ D01APF One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type D01AQF One-dimensional quadrature, adaptive, finite interval, weight function $1/\left(x-c\right)$, Cauchy principal value (Hilbert transform) D01ARF One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals D01ASF One-dimensional quadrature, adaptive, semi-infinite interval, weight function $\mathrm{cos}\left(\omega x\right)$ or $\mathrm{sin}\left(\omega x\right)$ D01ATF One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient on vector machines D01AUF One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient on vector machines D01BCF Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule D01BDF One-dimensional quadrature, non-adaptive, finite interval D01DAF Two-dimensional quadrature, finite region D01EAF Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands D01FBF Multidimensional Gaussian quadrature over hyper-rectangle D01FCF Multidimensional adaptive quadrature over hyper-rectangle D01FDF Multidimensional quadrature, Sag–Szekeres method, general product region or $n$-sphere D01GAF One-dimensional quadrature, integration of function defined by data values, Gill–Miller method D01GBF Multidimensional quadrature over hyper-rectangle, Monte–Carlo method D01GCF Multidimensional quadrature, general product region, number-theoretic method D01GDF Multidimensional quadrature, general product region, number-theoretic method, variant of D01GCF efficient on vector machines D01GYF Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime D01GZF Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes D01JAF Multidimensional quadrature over an $n$-sphere, allowing for badly behaved integrands D01PAF Multidimensional quadrature over an $n$-simplex D01RAF One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication D01RBF Diagnostic routine for D01RAF D01RCF Determine required array dimensions for D01RAF D01RGF One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands D01TBF Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule D01UAF One-dimensional Gaussian quadrature, choice of weight functions D01ZKF Option setting routine D01ZLF Option getting routine

© The Numerical Algorithms Group Ltd, Oxford UK. 2013