This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

G02 Chapter Contents (PDF version)
G02 Chapter Introduction
NAG Library Manual

NAG Library Chapter Contents

G02 – Correlation and Regression Analysis

G02 Chapter Introduction

Routine
Name
Mark of
Introduction

Purpose
G02AAF
Example Text
Example Data
22 nagf_correg_corrmat_nearest
Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
G02ABF
Example Text
Example Data
23 nagf_correg_corrmat_nearest_bounded
Computes the nearest correlation matrix to a real square matrix, augmented G02AAF to incorporate weights and bounds
G02AEF
Example Text
Example Data
23 nagf_correg_corrmat_nearest_kfactor
Computes the nearest correlation matrix with k-factor structure to a real square matrix
G02AJF
Example Text
Example Data
24 nagf_nearest_correlation_grubisic
Computes the nearest correlation matrix to a real square matrix, using element-wise weighting
G02BAF
Example Text
Example Data
4 nagf_correg_coeffs_pearson
Pearson product-moment correlation coefficients, all variables, no missing values
G02BBF
Example Text
Example Data
4 nagf_correg_coeffs_pearson_miss_case
Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
G02BCF
Example Text
Example Data
4 nagf_correg_coeffs_pearson_miss_pair
Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
G02BDF
Example Text
Example Data
4 nagf_correg_coeffs_zero
Correlation-like coefficients (about zero), all variables, no missing values
G02BEF
Example Text
Example Data
4 nagf_correg_coeffs_zero_miss_case
Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
G02BFF
Example Text
Example Data
4 nagf_correg_coeffs_zero_miss_pair
Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
G02BGF
Example Text
Example Data
4 nagf_correg_coeffs_pearson_subset
Pearson product-moment correlation coefficients, subset of variables, no missing values
G02BHF
Example Text
Example Data
4 nagf_correg_coeffs_pearson_subset_miss_case
Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
G02BJF
Example Text
Example Data
4 nagf_correg_coeffs_pearson_subset_miss_pair
Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values
G02BKF
Example Text
Example Data
4 nagf_correg_coeffs_zero_subset
Correlation-like coefficients (about zero), subset of variables, no missing values
G02BLF
Example Text
Example Data
4 nagf_correg_coeffs_zero_subset_miss_case
Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
G02BMF
Example Text
Example Data
4 nagf_correg_coeffs_zero_subset_miss_pair
Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
G02BNF
Example Text
Example Data
4 nagf_correg_coeffs_kspearman_overwrite
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
G02BPF
Example Text
Example Data
4 nagf_correg_coeffs_kspearman_miss_case_overwrite
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
G02BQF
Example Text
Example Data
4 nagf_correg_coeffs_kspearman
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
G02BRF
Example Text
Example Data
4 nagf_correg_coeffs_kspearman_miss_case
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
G02BSF
Example Text
Example Data
4 nagf_correg_coeffs_kspearman_miss_pair
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
G02BTF
Example Text
Example Data
14 nagf_correg_ssqmat_update
Update a weighted sum of squares matrix with a new observation
G02BUF
Example Text
Example Data
14 nagf_correg_ssqmat
Computes a weighted sum of squares matrix
G02BWF
Example Text
Example Data
14 nagf_correg_ssqmat_to_corrmat
Computes a correlation matrix from a sum of squares matrix
G02BXF
Example Text
Example Data
14 nagf_correg_corrmat
Computes (optionally weighted) correlation and covariance matrices
G02BYF
Example Text
Example Data
17 nagf_correg_corrmat_partial
Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by G02BXF
G02BZF
Example Text
Example Data
24 nagf_correg_ssqmat_combine
Combines two sums of squares matrices, for use after G02BUF
G02CAF
Example Text
Example Data
4 nagf_correg_linregs_const
Simple linear regression with constant term, no missing values
G02CBF
Example Text
Example Data
4 nagf_correg_linregs_noconst
Simple linear regression without constant term, no missing values
G02CCF
Example Text
Example Data
4 nagf_correg_linregs_const_miss
Simple linear regression with constant term, missing values
G02CDF
Example Text
Example Data
4 nagf_correg_linregs_noconst_miss
Simple linear regression without constant term, missing values
G02CEF
Example Text
Example Data
4 nagf_correg_linregm_service_select
Service routine for multiple linear regression, select elements from vectors and matrices
G02CFF
Example Text
Example Data
4 nagf_correg_linregm_service_reorder
Service routine for multiple linear regression, re-order elements of vectors and matrices
G02CGF
Example Text
Example Data
4 nagf_correg_linregm_coeffs_const
Multiple linear regression, from correlation coefficients, with constant term
G02CHF
Example Text
Example Data
4 nagf_correg_linregm_coeffs_noconst
Multiple linear regression, from correlation-like coefficients, without constant term
G02DAF
Example Text
Example Data
14 nagf_correg_linregm_fit
Fits a general (multiple) linear regression model
G02DCF
Example Text
Example Data
14 nagf_correg_linregm_obs_edit
Add/delete an observation to/from a general linear regression model
G02DDF
Example Text
Example Data
14 nagf_correg_linregm_update
Estimates of linear parameters and general linear regression model from updated model
G02DEF
Example Text
Example Data
14 nagf_correg_linregm_var_add
Add a new independent variable to a general linear regression model
G02DFF
Example Text
Example Data
14 nagf_correg_linregm_var_del
Delete an independent variable from a general linear regression model
G02DGF
Example Text
Example Data
14 nagf_correg_linregm_fit_newvar
Fits a general linear regression model to new dependent variable
G02DKF
Example Text
Example Data
14 nagf_correg_linregm_constrain
Estimates and standard errors of parameters of a general linear regression model for given constraints
G02DNF
Example Text
Example Data
14 nagf_correg_linregm_estfunc
Computes estimable function of a general linear regression model and its standard error
G02EAF
Example Text
Example Data
14 nagf_correg_linregm_rssq
Computes residual sums of squares for all possible linear regressions for a set of independent variables
G02ECF
Example Text
Example Data
14 nagf_correg_linregm_rssq_stat
Calculates R2 and CP values from residual sums of squares
G02EEF
Example Text
Example Data
14 nagf_correg_linregm_fit_onestep
Fits a linear regression model by forward selection
G02EFF
Example Text
Example Data
21 nagf_correg_linregm_fit_stepwise
Stepwise linear regression
G02FAF
Example Text
Example Data
14 nagf_correg_linregm_stat_resinf
Calculates standardized residuals and influence statistics
G02FCF
Example Text
Example Data
15 nagf_correg_linregm_stat_durbwat
Computes Durbin–Watson test statistic
G02GAF
Example Text
Example Data
14 nagf_correg_glm_normal
Fits a generalized linear model with Normal errors
G02GBF
Example Text
Example Data
14 nagf_correg_glm_binomial
Fits a generalized linear model with binomial errors
G02GCF
Example Text
Example Data
14 nagf_correg_glm_poisson
Fits a generalized linear model with Poisson errors
G02GDF
Example Text
Example Data
14 nagf_correg_glm_gamma
Fits a generalized linear model with gamma errors
G02GKF
Example Text
Example Data
14 nagf_correg_glm_constrain
Estimates and standard errors of parameters of a general linear model for given constraints
G02GNF
Example Text
Example Data
14 nagf_correg_glm_estfunc
Computes estimable function of a generalized linear model and its standard error
G02GPF
Example Text
Example Data
22 nagf_correg_glm_predict
Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
G02HAF
Example Text
Example Data
13 nagf_correg_robustm
Robust regression, standard M-estimates
G02HBF
Example Text
Example Data
13 nagf_correg_robustm_wts
Robust regression, compute weights for use with G02HDF
G02HDF
Example Text
Example Data
13 nagf_correg_robustm_user
Robust regression, compute regression with user-supplied functions and weights
G02HFF
Example Text
Example Data
13 nagf_correg_robustm_user_varmat
Robust regression, variance-covariance matrix following G02HDF
G02HKF
Example Text
Example Data
14 nagf_correg_robustm_corr_huber
Calculates a robust estimation of a correlation matrix, Huber's weight function
G02HLF
Example Text
Example Data
14 nagf_correg_robustm_corr_user_deriv
Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives
G02HMF
Example Text
Example Data
14 nagf_correg_robustm_corr_user
Calculates a robust estimation of a correlation matrix, user-supplied weight function
G02JAF
Example Text
Example Data
21 nagf_correg_mixeff_reml
Linear mixed effects regression using Restricted Maximum Likelihood (REML)
G02JBF
Example Text
Example Data
21 nagf_correg_mixeff_ml
Linear mixed effects regression using Maximum Likelihood (ML)
G02JCF 23 nagf_correg_mixeff_hier_init
Hierarchical mixed effects regression, initialization routine for G02JDF and G02JEF
G02JDF
Example Text
Example Data
23 nagf_correg_mixeff_hier_reml
Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
G02JEF
Example Text
Example Data
23 nagf_correg_mixeff_hier_ml
Hierarchical mixed effects regression using Maximum Likelihood (ML)
G02KAF
Example Text
Example Data
22 nagf_correg_ridge_opt
Ridge regression, optimizing a ridge regression parameter
G02KBF
Example Text
Example Data
22 nagf_correg_ridge
Ridge regression using a number of supplied ridge regression parameters
G02LAF
Example Text
Example Data
22 nagf_correg_pls_svd
Partial least squares (PLS) regression using singular value decomposition
G02LBF
Example Text
Example Data
22 nagf_correg_pls_wold
Partial least squares (PLS) regression using Wold's iterative method
G02LCF
Example Text
Example Data
22 nagf_correg_pls_fit
PLS parameter estimates following partial least squares regression by G02LAF or G02LBF
G02LDF
Example Text
Example Data
22 nagf_correg_pls_pred
PLS predictions based on parameter estimates from G02LCF
G02QFF
Example Text
Example Data
Example Plot
23 nagf_correg_quantile_linreg_easy
Linear quantile regression, simple interface, independent, identically distributed (IID) errors
G02QGF
Example Text
Example Data
Example Plot
23 nagf_correg_quantile_linreg
Linear quantile regression, comprehensive interface
G02ZKF 23 nagf_correg_optset
Option setting routine for G02QGF
G02ZLF 23 nagf_correg_optget
Option getting routine for G02QGF

G02 Chapter Contents (PDF version)
G02 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012