F06GWF (ZSCTR) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F06GWF (ZSCTR)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy
    9  Example

1  Purpose

F06GWF (ZSCTR) scatters the elements of a sparse complex vector x stored in compressed form, into a complex vector y in full storage form.

2  Specification

SUBROUTINE F06GWF ( NZ, X, INDX, Y)
INTEGER  NZ, INDX(*)
COMPLEX (KIND=nag_wp)  X(*), Y(*)
The routine may be called by its BLAS name zsctr.

3  Description

None.

4  References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra subprograms ACM Trans. Math. Software 17 253–263

5  Parameters

1:     NZ – INTEGERInput
On entry: the number of nonzeros in the sparse vector x.
2:     X(*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the dimension of the array X must be at least max1,NZ .
On entry: the compressed vector x. X contains xi for iJ.
3:     INDX(*) – INTEGER arrayInput
Note: the dimension of the array INDX must be at least max1,NZ .
On entry: the indices of the elements in the compressed vector x.
Constraint: the indices must be distinct.
4:     Y(*) – COMPLEX (KIND=nag_wp) arrayOutput
Note: the dimension of the array Y must be at least maxkINDXk .
On exit: the vector y. Only elements corresponding to indices in INDX are altered.

6  Error Indicators and Warnings

None.

7  Accuracy

Not applicable.

8  Further Comments

None.

9  Example

None.

F06GWF (ZSCTR) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012