F06FTF (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual
NAG Library Routine Document
F06FTF
Note:
before using this routine, please read the Users' Note for your implementation to check the interpretation of
bold italicised
terms and other implementation-dependent details.
+
−
Contents
1
Purpose
2
Specification
3
Description
4
References
5
Parameters
6
Error Indicators and Warnings
7
Accuracy
8
Further Comments
9
Example
1 Purpose
F06FTF applies a NAG (as opposed to LINPACK) style real elementary reflection to a real vector.
2 Specification
SUBROUTINE F06FTF (
N
,
DELTA
,
Y
,
INCY
,
ZETA
,
Z
,
INCZ
)
INTEGER
N, INCY, INCZ
REAL (KIND=nag_wp)
DELTA, Y(*), ZETA, Z(*)
3 Description
F06FTF applies a real elementary reflection (Householder matrix)
P
, as generated by
F06FRF
, to a given real vector:
δ
y
←
P
δ
y
,
where
y
is an
n
-element real vector and
δ
a real scalar.
4 References
None.
5 Parameters
1: N – INTEGER
Input
On entry
:
n
, the number of elements in
y
and
z
.
2: DELTA – REAL (KIND=nag_wp)
Input/Output
On entry
: the original scalar
δ
.
On exit
: the transformed scalar
δ
.
3: Y(
*
) – REAL (KIND=nag_wp) array
Input/Output
Note:
the dimension of the array
Y
must be at least
max
1
,
1
+
N
-
1
×
INCY
.
On entry
: the original vector
y
.
If
INCY
>
0
,
y
i
must be stored in
Y
1
+
i
-
1
×
INCY
, for
i
=
1
,
2
,
…
,
N
.
If
INCY
<
0
,
y
i
must be stored in
Y
1
-
N
-
i
×
INCY
, for
i
=
1
,
2
,
…
,
N
.
On exit
: the transformed stored in the same array elements used to supply the original vector
y
.
4: INCY – INTEGER
Input
On entry
: the increment in the subscripts of
Y
between successive elements of
y
.
5: ZETA – REAL (KIND=nag_wp)
Input
On entry
: the scalar
ζ
, as returned by
F06FRF
.
If
ζ
=
0
,
P
is assumed to be the unit matrix and the transformation is skipped.
Constraint
: if
ZETA
=
0.0
,
N
=
0
.
6: Z(
*
) – REAL (KIND=nag_wp) array
Input
Note:
the dimension of the array
Z
must be at least
max
1
,
1
+
N
-
1
×
INCZ
.
On entry
: the vector
z
, as returned by
F06FRF
.
If
INCZ
>
0
,
z
i
must be stored in
Z
1
+
i
-
1
×
INCZ
, for
i
=
1
,
2
,
…
,
N
.
If
INCZ
<
0
,
z
i
must be stored in
Z
1
-
N
-
i
×
INCZ
, for
i
=
1
,
2
,
…
,
N
.
7: INCZ – INTEGER
Input
On entry
: the increment in the subscripts of
Z
between successive elements of
z
.
6 Error Indicators and Warnings
None.
7 Accuracy
Not applicable.
8 Further Comments
None.
9 Example
None.
F06FTF (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual
© The Numerical Algorithms Group Ltd, Oxford, UK. 2012