This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

F06ERF (DDOTI) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F06ERF (DDOTI)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy
    9  Example

1  Purpose

F06ERF (DDOTI) computes the scalar product of a sparse real vector, stored in compressed form, with a real vector.

2  Specification

FUNCTION F06ERF ( NZ, X, INDX, Y)
REAL (KIND=nag_wp) F06ERF
INTEGER  NZ, INDX(*)
REAL (KIND=nag_wp)  X(*), Y(*)
The routine may be called by its BLAS name ddoti.

3  Description

F06ERF (DDOTI) returns, via the function name, the value of the scalar product
xTy = x1 × yindx1 + x2 × yindy2 + + xnz × yindxnz
where x is a sparse real vector, stored in compressed form and y is a real vector in full storage format.

4  References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra subprograms ACM Trans. Math. Software 17 253–263

5  Parameters

1:     NZ – INTEGERInput
On entry: the number of nonzeros in the sparse vector x.
2:     X(*) – REAL (KIND=nag_wp) arrayInput
Note: the dimension of the array X must be at least max1,NZ .
On entry: the nonzero elements of the sparse vector x.
3:     INDX(*) – INTEGER arrayInput
Note: the dimension of the array INDX must be at least max1,NZ .
On entry: INDXi must contain the index of Xi in the sparse vector x, for i=1,2,,NZ.
4:     Y(*) – REAL (KIND=nag_wp) arrayInput
Note: the dimension of the array Y must be at least maxkINDXk .
On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

6  Error Indicators and Warnings

None.

7  Accuracy

Not applicable.

8  Further Comments

None.

9  Example

None.

F06ERF (DDOTI) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012