
NAG Library Function Document

nag_ip_free (h02xzc)

1 Purpose

nag_ip_free (h02xzc) is the function for freeing memory allocated by a NAG C Library function to the
h02 options structure, type Nag_H02_Opt. The function will only free memory which has been allocated
to pointers within the options structure by an integer programming function; it will not free memory
allocated by you. The standard C function free() must not be used for freeing NAG allocated memory
in the h Chapter Introduction.

2 Specification

#include <nag.h>
#include <nagh.h>

void nag_ip_free (Nag_H02_Opt *options, const char *p_name, NagError *fail)

3 Description

The integer programming (IP) functions of the h Chapter Introduction have a number of optional
arguments, which are set by means of a structure of type Nag_H02_Opt. Optional argument values can
be assigned to members of the options structure directly in the program text and/or by supplying the
optional values in a file to be read by the function nag_ip_read (h02xyc).

The IP functions use pointers within the options structure as arrays. The appropriate amount of memory
for the arrays will be allocated internally by the IP function being used. The same options structure may
be used in several calls to an IP function: NAG allocated memory will be automatically freed and
reallocated on each call to the IP function. This is the recommended method of use of the pointers
within the options structure.

If users wish to free NAG allocated memory from the options structure at any point in their program,
then nag_ip_free (h02xzc) must be used to perform the freeing operation.

In most cases, memory may be allocated to the pointers in the options structure if the NAG default
memory allocation is not wanted — nag_ip_free (h02xzc) will not free this user allocated memory.
Dynamic memory allocated by you should be freed by the standard C library function free(). If it is
intended to re-enter a NAG IP function after this use of free(), with the intention of using the NAG
default memory allocation, then the pointer involved must be set to NULL before re-entry.

The purpose of using nag_ip_free (h02xzc) to free NAG allocated memory instead of free() is to allow
the IP functions to maintain knowledge of which pointers have been allocated memory by a NAG
function and which have been allocated by you. If nag_ip_free (h02xzc) is not used to free the NAG
allocated memory and the standard C function free() is used instead then there is the danger that any
memory which is dynamically allocated will be freed by the IP function.

To conserve memory nag_ip_free (h02xzc) should also be used to free NAG allocated memory within
the options structure when that memory is no longer required, e.g., before returning from the function
which calls the NAG C Library h02 functions. Any memory not freed will, of course, be freed when
your program terminates.

4 References

None.

h – Operations Research h02xzc

Mark 24 h02xzc.1

../H/hintro.pdf
../H/hintro.pdf
../H/h02xyc.pdf


5 Arguments

1: options – Nag_H02_Opt * Input/Output

On entry: the options structure that was used in a call to an IP function in the h Chapter
Introduction. The pointers within the structure may have either NAG allocated memory or user
allocated memory.

On exit: those pointers selected (see argument p_name) which pointed to NAG allocated memory
will have been freed and set to NULL. Any user allocated memory will not be freed.

2: p_name – const char * Input

On entry: a character string specifying which pointer is to be freed. The string should give the
optional argument or structure member name. If you wish to free all NAG allocated memory then
an empty string "" or the string "all" should be given. Please note that p_name is case sensitive
and as such upper-case letters should not be used unless explicitly required.

3: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_STR_UNKNOWN

String supplied, stringh i, does not match name of any pointer in the options structure.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_ip_bb (h02bbc) and nag_ip_mps_read (h02buc).

h02xzc NAG Library Manual

h02xzc.2 (last) Mark 24

../H/hintro.pdf
../H/hintro.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

	h02xzc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	options
	p_name
	fail

	6 Error Indicators and Warnings
	NE_STR_UNKNOWN

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction



