205 — Random Number Generators g05ndc

NAG Library Function Document
nag rand_sample (g05ndc)

1 Purpose

nag rand_sample (g05ndc) selects a pseudorandom sample without replacement from an integer vector.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_sample (const Integer ipopl[], Integer n, Integer isampl([],
Integer m, Integer state[], NagError *fail)

3 Description

nag_rand_sample (g05ndc) selects m elements from a population vector ipop of length n and places
them in a sample vector isampl. Their order in ipop will be preserved in isampl. Each of the <T7ZL>
possible combinations of elements of isampl may be regarded as being equally probable.

For moderate or large values of n it is theoretically impossible that all combinations of size m may
occur, unless m is near 1 or near n. This is because <;:L> exceeds the cycle length of any of the base

generators. For practical purposes this is irrelevant, as the time taken to generate all possible
combinations is many millenia.

One of the initialization functions nag rand init_repeatable (gO5kfc) (for a repeatable sequence if
computed sequentially) or nag rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand sample (g05ndc).

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley

5 Arguments

1: ipop[n] — const Integer Input

On entry: the population to be sampled.

2: n — Integer Input
On entry: the number of elements in the population vector to be sampled.

Constraint: n > 1.

3: isampl[m] — Integer Output

On exit: the selected sample.

4: m — Integer Input
On entry: the sample size.

Constraint: 1 < m < n.

Mark 24 205ndc. 1

../G05/g05kfc.pdf
../G05/g05kgc.pdf

g05ndc NAG Library Manual

5: state[dim| — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag_rand init repeatable (g05kfc) or nag rand init_nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 1.

NE_INT 2

On entry, m = (value) and n = (value).
Constraint: 1 <m < n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag rand sample (g05ndc) is of order n.

In order to sample other kinds of vectors, or matrices of higher dimension, the following technique may
be used:

(a) setipop[i—1] =1, for i=1,2,...,n;
(b) use nag_rand sample (g05ndc) to take a sample from ipop and put it into isampl,
(c) use the contents of isampl as a set of indices to access the relevant vector or matrix.

In order to divide a population into several groups, nag rand permute (g05ncc) is more efficient.

g05ndc.2 Mark 24

../G05/g05kfc.pdf
../G05/g05kfc.pdf
../G05/g05kgc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../G05/g05ncc.pdf

205 — Random Number Generators g05ndc

10 Example

In the example program random samples of size 1,2, ..., 8 are selected from a vector containing the first
eight positive integers in ascending order. The samples are generated and printed for each sample size by
a call to nag_rand_sample (g05ndc) after initialization by nag rand init repeatable (gO5kfc).

10.1 Program Text

/* nag_rand_sample (g05ndc) Example Program.

Copyright 2008, Numerical Algorithms Group.

E I R

Mark 9, 2009.
*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)

{
/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, lstate, m;
Integer *ipop = 0, *isampl = 0, *state = 0;

/* NAG structures */
NagError fail;

/* Population size */
Integer n = 8;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;
Integer subid = 0;

/* Set the seed */
Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand_sample (g05ndc) Example Program Results\n\n");

/* Get the length of the state array */

lstate = -1;

nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)

{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
if (! (ipop = NAG_ALLOC(n, Integer)) ||
! (isampl = NAG_ALLOC(n, Integer)) ||
! (state = NAG_ALLOC(lstate, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
3

/* Initialise the generator to a repeatable sequence*/
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);

Mark 24 g05ndc.3

../G05/g05kfc.pdf

g05ndc NAG Library Manual

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

printf(" Samples from the first %11d integers\n", n);
printf (" Sample size Values\n");

/* Initialise the population*/
for (i = 0; 1 < n; i++)
ipopli] = i + 1;

/* Generate samples of different sizes*/

for (m = 1; m <= n; m++)
{
nag_rand_sample(ipop, n, isampl, m, state, &fail);
if (fail.code != NE_NOERROR)
{

printf("Error from nag_rand_sample (g05ndc).\n%s\n",
fail.message);

exit_status = 1;
goto END;
3
/* Display the results*/
printf (" %61d ", m);
for (i = 0; 1 < m; i++)
printf("%21d%ss", isampl[i], (i + 1)%82" ":"\n");
if (m%8) printf("\n");
}
END:

NAG_FREE (ipop) ;
NAG_FREE (isampl) ;
NAG_FREE (state) ;

return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_rand_sample (g05ndc) Example Program Results

Samples from the first 8 integers

Sample size Values
1 2
2 3 6
3 1 5 7
4 2 6 7 8
5 1 2 3 4 8
6 1 3 4 5 6 7
7 1 3 4 5 6 7 8
8 1 2 3 4 5 6 7 8

g05ndc.4 (last) Mark 24

	g05ndc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Kendall and Stuart (1969)
	Knuth (1981)

	5 Arguments
	ipop
	n
	isampl
	m
	state
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_INVALID_STATE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

