205 — Random Number Generators g05ndc

NAG Library Function Document
nag rand_sample (g05ndc)

1 Purpose

nag rand_sample (g05ndc) selects a pseudorandom sample without replacement from an integer vector.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_sample (const Integer ipopl[], Integer n, Integer isampl([],
Integer m, Integer state[], NagError *fail)

3 Description

nag_rand_sample (g05ndc) selects m elements from a population vector ipop of length n and places
them in a sample vector isampl. Their order in ipop will be preserved in isampl. Each of the <T7ZL>
possible combinations of elements of isampl may be regarded as being equally probable.

For moderate or large values of n it is theoretically impossible that all combinations of size m may
occur, unless m is near 1 or near n. This is because <;:L> exceeds the cycle length of any of the base

generators. For practical purposes this is irrelevant, as the time taken to generate all possible
combinations is many millenia.

One of the initialization functions nag rand init_repeatable (gO5kfc) (for a repeatable sequence if
computed sequentially) or nag rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand sample (g05ndc).

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley

5  Arguments

1: ipop[n] — const Integer Input

On entry: the population to be sampled.

2: n — Integer Input
On entry: the number of elements in the population vector to be sampled.

Constraint: n > 1.

3: isampl[m] — Integer Output

On exit: the selected sample.

4: m — Integer Input
On entry: the sample size.

Constraint: 1 < m < n.
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5: state[dim| — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag_rand init repeatable (g05kfc) or nag rand init_nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 1.

NE_INT 2

On entry, m = (value) and n = (value).
Constraint: 1 <m < n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

7  Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag rand sample (g05ndc) is of order n.

In order to sample other kinds of vectors, or matrices of higher dimension, the following technique may
be used:

(a) setipop[i—1] =1, for i=1,2,...,n;
(b) use nag_rand sample (g05ndc) to take a sample from ipop and put it into isampl,
(c) use the contents of isampl as a set of indices to access the relevant vector or matrix.

In order to divide a population into several groups, nag rand permute (g05ncc) is more efficient.
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10 Example

In the example program random samples of size 1,2, ..., 8 are selected from a vector containing the first
eight positive integers in ascending order. The samples are generated and printed for each sample size by
a call to nag_rand_sample (g05ndc) after initialization by nag rand init repeatable (gO5kfc).

10.1 Program Text

/* nag_rand_sample (g05ndc) Example Program.

Copyright 2008, Numerical Algorithms Group.

E I R

Mark 9, 2009.
*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)

{
/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, lstate, m;
Integer *ipop = 0, *isampl = 0, *state = 0;

/* NAG structures */
NagError fail;

/* Population size */
Integer n = 8;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;
Integer subid = 0;

/* Set the seed */
Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand_sample (g05ndc) Example Program Results\n\n");

/* Get the length of the state array */

lstate = -1;

nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)

{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
if (! (ipop = NAG_ALLOC(n, Integer)) ||
! (isampl = NAG_ALLOC(n, Integer)) ||
! (state = NAG_ALLOC(lstate, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
3

/* Initialise the generator to a repeatable sequence*/
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
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if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

printf(" Samples from the first %11d integers\n", n);
printf (" Sample size Values\n");

/* Initialise the population*/
for (i = 0; 1 < n; i++)
ipopli] = i + 1;

/* Generate samples of different sizes*/

for (m = 1; m <= n; m++)
{
nag_rand_sample(ipop, n, isampl, m, state, &fail);
if (fail.code != NE_NOERROR)
{

printf("Error from nag_rand_sample (g05ndc).\n%s\n",
fail.message);

exit_status = 1;
goto END;
3
/* Display the results*/
printf (" %61d ", m);
for (i = 0; 1 < m; i++)
printf("%21d%ss", isampl[i], (i + 1)%82" ":"\n");
if (m%8) printf("\n");
}
END:

NAG_FREE (ipop) ;
NAG_FREE (isampl) ;
NAG_FREE (state) ;

return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_rand_sample (g05ndc) Example Program Results

Samples from the first 8 integers

Sample size Values
1 2
2 3 6
3 1 5 7
4 2 6 7 8
5 1 2 3 4 8
6 1 3 4 5 6 7
7 1 3 4 5 6 7 8
8 1 2 3 4 5 6 7 8
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