f08 — Least-squares and Eigenvalue Problems (LAPACK) fO08uec

NAG Library Function Document
nag dsbgst (f08uec)

1 Purpose

nag_dsbgst (fO8uec) reduces a real symmetric-definite generalized eigenproblem Az = ABz to the
standard form Cy = Ay, where A and B are band matrices, A is a real symmetric matrix, and B has been
factorized by nag_dpbstf (fO8ufc).

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dsbgst (Nag OrderType order, Nag VectType vect, Nag UploType uplo,
Integer n, Integer ka, Integer kb, double abl[], Integer pdab,
const double bb[], Integer pdbb, double x[], Integer pdx,
NagError *fail)

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az = ABz to the standard form
Cy = Ay, where A, B and C are banded, nag_dsbgst (f08uec) must be preceded by a call to nag_dpbstf
(fO8ufc) which computes the split Cholesky factorization of the positive definite matrix B: B = STS.
The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to
be approximately halved.

This function overwrites A with C = XTAX, where X = S~'Q and @ is a orthogonal matrix chosen
(implicitly) to preserve the bandwidth of A. The function also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41-44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73—-86

S Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: vect — Nag VectType Input
On entry: indicates whether X is to be returned.

vect = Nag_DoNotForm
X is not returned.

Mark 24 fO8uec.1

../F08/f08ufc.pdf
../F08/f08ufc.pdf
../F08/f08ufc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

fO08uec NAG Library Manual

vect = Nag_FormX
X is returned.

Constraint: vect = Nag_DoNotForm or Nag_FormX.

3: uplo — Nag UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored.

uplo = Nag_Upper
The upper triangular part of A is stored.

uplo = Nag_Lower
The lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

5: ka — Integer Input
On entry: if uplo = Nag_Upper, the number of superdiagonals, k,, of the matrix A.
If uplo = Nag_Lower, the number of subdiagonals, k,, of the matrix A.

Constraint: ka > 0.

6: kb — Integer Input
On entry: if uplo = Nag_Upper, the number of superdiagonals, k;, of the matrix B.
If uplo = Nag_Lower, the number of subdiagonals, k;, of the matrix B.
Constraint: ka > kb > 0.

7: ab[dim] — double Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab X n).
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

This is stored as a notional two-dimensional array with row elements or column elements stored
contiguously. The storage of elements of A;;, depends on the order and uplo arguments as
follows:

if order = 'Nag_ColMajor' and uplo = 'Nag_Upper',
A;j is stored in ablk,+i—j+(j—1)xpdab], for j=1,...,n and
i =max(l,j — k4),...,J;

if order = 'Nag_ColMajor' and uplo = 'Nag _Lower',
A;j is stored in abli—j+(j—1)xpdab], for j=1,...,n and
i=7,...,min(n,j+ ky);

if order = 'Nag_RowMajor' and uplo = 'Nag_Upper’,
A;; is stored in ab[j—i+(i—1)xpdab], for ¢=1,...,n and
j=1t,...,min(n,i+ k,);

if order = 'Nag RowMajor' and uplo = 'Nag Lower',
A;j is stored in ablk,+j—i+(:—1)xpdab], for i=1,...,n and
j=max(1,i —k,),...,1.

On exit: the upper or lower triangle of ab is overwritten by the corresponding upper or lower
triangle of C' as specified by uplo.

fO8uec.2 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO08uec

10:

11:

12:

13:

6

pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > ka + 1.

bb[dim] — const double Input
Note: the dimension, dim, of the array bb must be at least max(1, pdbb x n).

On entry: the banded split Cholesky factor of B as specified by uplo, n and kb and returned by
nag_dpbstf (f08ufc).

pdbb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array bb.

Constraint: pdbb > kb + 1.

x[dim] — double Output
Note: the dimension, dim, of the array x must be at least

max(1, pdx x n) when vect = Nag_FormX;
1 when vect = Nag DoNotForm.

The (i, j)th element of the matrix X is stored in

x[(j — 1) x pdx + i — 1] when order = Nag_ColMajor;
x[(¢ — 1) x pdx + j — 1] when order = Nag_RowMajor.

On exit: the n by n matrix X = S~1Q, if vect = Nag FormX.

If vect = Nag_DoNotForm, x is not referenced.

pdx — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array X.

Constraints:
if vect = Nag FormX, pdx > max(1,n);
if vect = Nag_DoNotForm, pdx > 1.
fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_ENUM_INT 2

On entry, vect = (value), pdx = (value) and n = (value).
Constraint: if vect = Nag_FormX, pdx > max(1,n);
if vect = Nag_DoNotForm, pdx > 1.

Mark 24 fO8uec.3

../F08/f08ufc.pdf
../F08/f08ufc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

fO08uec NAG Library Manual

NE_INT

On entry, ka = (value).
Constraint: ka > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdbb = (value).
Constraint: pdbb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, ka = (value) and kb = (value).
Constraint: ka > kb > 0.

On entry, pdab = (value) and ka = (value).
Constraint: pdab > ka + 1.

On entry, pdbb = (value) and kb = (value).
Constraint: pdbb > kb + 1.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B~
When nag_dsbgst (f08uec) is used as a step in the computation of eigenvalues and eigenvectors of the
original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to
inversion.

8 Parallelism and Performance

nag_dsbgst (fO8uec) is not threaded by NAG in any implementation.

nag_dsbgst (f08uec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.
9 Further Comments

The total number of floating-point operations is approximately 6n’kp, when vect = Nag_DoNotForm,
assuming n >> kq, kp; there are an additional (3/2)n*(kp/ka) operations when vect = Nag FormX.

The complex analogue of this function is nag_zhbgst (fO8usc).

fO8uec.4 Mark 24

../F08/f08usc.pdf

f08 — Least-squares and Eigenvalue Problems (LAPACK)

This example computes all the eigenvalues of Az = ABz, where

10 Example
0.24

_ | 0.39
A=1oa
0.00

039 042 0.00
—0.11 0.79 0.63
0.79 —-0.25 0.48
0.63 0.48 —-0.03

207 0.95
{095 1.69

and B=1 000 —029
0.00 0.00

0.00
-0.29
0.65
—0.33

fO8uec

0.00
0.00
—0.33
1.17

Here A is symmetric, B is symmetric positive definite, and A and B are treated as band matrices. B
must first be factorized by nag_dpbstf (fO8ufc). The program calls nag dsbgst (f08uec) to reduce the
problem to the standard form C'y = Ay, then nag_dsbtrd (fO08hec) to reduce C' to tridiagonal form, and

nag_dsterf (f08jfc) to compute the eigenvalues.

10.1 Program Text

/* (f

*

nag_dsbgst

08uec)

Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7,
*/

2001.

#include
#include
#include
#include

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf08.h>

int main(void)

{
/* Scalars */
Integer
Integer
NagError
Nag_UploType
Nag_OrderType
/* Arrays */

i,
exit_status =
fail;
uplo;
order;

0;

j, k1, k2, ka, kb, n, pdab, pdbb, pdx,

d_1len,

char
double

#ifdef N
#define
#define
#define
#define
order
#else
#define
#define
#define
#define
order
#endif

nag_enum_argl[40

*ab = 0, *bb
AG_COLUMN_MAJOR
AB_UPPER(I, J) abl[(J-
AB_LOWER(I, J) abl[(J-
BB_UPPER(I, J) bb[(J-
BB_LOWER(I, J) bbl[(J-
= Nag_ColMajor;
AB_UPPER(I, J) abl[(I-
AB_LOWER(I, J) abl[(I-
BB_UPPER(I, J) bb[(I-
BB_LOWER(I, J) bb[(I-
= Nag_RowMajor;

INIT FAIL(fail);
printf("nag_dsbgst (£08uec)

*d = 0, *e
1)*pdab + k1 + I
1)*pdab + I - J]
1)*pdbb + k2 + I
1)*pdbb + I - J]
1)*pdab + J - I]
1)*pdab + k1 + J
1)*pdbb + J - I]
1)*pdbb + k2 + J

Example Program

/* Skip heading in data file */

scanf ("$*[*\n]

")

scanf ("%$1d%1d%1ds*["\n] ", &n, &ka, &kb);

pdab = ka + 1;

pdbb = kb + 1;

pdx = n;

d_len = n;

e_len = n-1;

/* Allocate memory */

if (! (ab = NAG_ALLOC(pdab * n, double)) ||
Mark 24

0, *x = 0;

- J - 11

- J - 1]

- I -1]

- I - 1]
Results\n\n");

e_len;

fO8uec.5

../F08/f08ufc.pdf
../F08/f08hec.pdf
../F08/f08jfc.pdf
../F08/f08jfc.pdf

fO08uec NAG Library Manual

bb = NAG_ALLOC(pdbb * n, double)) ||
d = NAG_ALLOC(d_len, double)) ||
e |
X

NAG_ALLOC(e_len, double))

!(
1(
1(
1 (NAG_ALLOC(n * n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

/* Read whether Upper or Lower part of A is stored */
scanf ("%$39s%*["\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*
/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg) ;
/* Read A and B from data file */
kl = ka + 1;
k2 = kb + 1;

if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= MIN(i+ka, n); ++3)
scanf ("$1f", &AB_UPPER(i, j));
¥
scanf ("s*[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1, i-ka); j <= i; ++3)
scanf ("%1f", &AB_LOWER(i, Jj));
¥
scanf ("s*["\n] ");
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++i)
{
for (j = i; j <= MIN(i+kb, n); ++3)
scanf ("$1f", &BB_UPPER(i, j));
¥
scanf ("s*["\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = MAX(1l, i-kb); j <= i; ++3)
scanf ("%1f", &BB_LOWER(i, Jj));
¥
scanf ("s*[*\n] ");
}

/* Compute the split Cholesky factorization of B */

/* nag_dpbstf (f08ufc).
* Computes a split Cholesky factorization of real symmetric
* positive-definite band matrix A

*/
nag_dpbstf (order, uplo, n, kb, bb, pdbb, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dpbstf (£08ufc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, */
/* storing the result in A */
/* nag_dsbgst (f£08uec).
* Reduction of real symmetric-definite banded generalized
* eigenproblem Ax = lambda Bx to standard form

fO8uec.6 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO08uec

* Cy = lambda y, such that C has the same bandwidth as A
*/
nag_dsbgst(order, Nag_DoNotForm, uplo, n, ka, kb, ab, pdab, bb, pdbb,
x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dsbgst (£08uec).\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
/* nag_dsbtrd (£08hec).

* Orthogonal reduction of real symmetric band matrix to

* symmetric tridiagonal form

*/
nag_dsbtrd(order, Nag_DoNotForm, uplo, n, ka, ab, pdab, 4, e,

x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dsbtrd (f08hec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
/* nag_dsterf (£08jfc).
* All eigenvalues of real symmetric tridiagonal matrix,
* root-free variant of QL or QR
*
/
nag_dsterf(n, 4, e, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dsterf (£f087jfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print eigenvalues */
printf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)
printf (" %8.41f", 4d[i]);
printf ("\n");

END:
NAG_FREE
NAG_FREE
NAG_FREE
NAG_FREE ;
NAG_FREE (x) ;
return exit_status;

)i
) .

7

(ab
(bb
(d)l
(e)

10.2 Program Data

nag_dsbgst (f08uec) Example Program Data

4 2 1 :Values of n, ka and kb
Nag_Lower :Value of uplo
0.24

0.39 -0.11
0.42 0.79 -0.25
0.63 0.48 -0.03 :End of matrix A
2.07
0.95 1.69
-0.29 0.65
-0.33 1.17 :End of matrix B

Mark 24 fO8uec.7

fO08uec NAG Library Manual

10.3 Program Results

nag_dsbgst (f08uec) Example Program Results

Eigenvalues
-0.8305 -0.6401 0.0992 1.8525

fO8uec.8 (last) Mark 24

	f08uec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Crawford (1973)
	Kaufman (1984)

	5 Arguments
	order
	vect
	uplo
	n
	ka
	kb
	ab
	pdab
	bb
	pdbb
	x
	pdx
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ENUM_INT_2
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

