f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8kec

NAG Library Function Document
nag_dgebrd (f08kec)

1 Purpose

nag_dgebrd (f08kec) reduces a real m by n matrix to bidiagonal form.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgebrd (Nag_OrderType order, Integer m, Integer n, double all,
Integer pda, double d[], double e[], double tauqg[], double taupl],
NagError *fail)

3 Description

nag_dgebrd (f08kec) reduces a real m by n matrix A to bidiagonal form B by an orthogonal
transformation: A = QBP", where Q and P are orthogonal matrices of order m and n respectively.

If m > n, the reduction is given by:
A= Q(%)PT = QB P",

where B; is an n by n upper bidiagonal matrix and (), consists of the first n columns of Q.

If m < n, the reduction is given by
A=Q(B, 0)P"=QBPF,
where B is an m by m lower bidiagonal matrix and P consists of the first m rows of PT.

The orthogonal matrices () and P are not formed explicitly but are represented as products of elementary
reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with @) and P in
this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

Mark 24 f08kec. 1

../F08/f08intro.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

fO8kec NAG Library Manual

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least

max(1, pda x n) when order = Nag_ColMajor;
max(1,m x pda) when order = Nag_RowMajor.

The (4, j)th element of the matrix A is stored in

a[(j— 1) x pda + i — 1] when order = Nag_ColMajor;
a[(i — 1) x pda + j — 1] when order = Nag_RowMajor.

On entry: the m by n matrix A.
On exit: if m > n, the diagonal and first superdiagonal are overwritten by the upper bidiagonal

matrix B, elements below the diagonal are overwritten by details of the orthogonal matrix) and
elements above the first superdiagonal are overwritten by details of the orthogonal matrix P.

If m < n, the diagonal and first subdiagonal are overwritten by the lower bidiagonal matrix B,
elements below the first subdiagonal are overwritten by details of the orthogonal matrix () and
elements above the diagonal are overwritten by details of the orthogonal matrix P.

5: pda — Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the
array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
6: d[dim] — double Output
Note: the dimension, dim, of the array d must be at least max(1, min(m,n)).

On exit: the diagonal elements of the bidiagonal matrix B.

7: e[dim] — double Output
Note: the dimension, dim, of the array e must be at least max(1, min(m,n) — 1).

On exit: the off-diagonal elements of the bidiagonal matrix B.

8: tauq[dim] — double Output
Note: the dimension, dim, of the array tauq must be at least max(1, min(m,n)).

On exit: further details of the orthogonal matrix Q.

9: taup[dim| — double Output
Note: the dimension, dim, of the array taup must be at least max(1, min(m,n)).

On exit: further details of the orthogonal matrix P.

10: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

f08kec.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8kec

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2

On entry, pda = (value) and m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value) and n = (value).
Constraint: pda > max(1,n).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy
The computed bidiagonal form B satisfies QBPT = A + E, where
[Elly < c(n)el|All,,
¢(n) is a modestly increasing function of n, and € is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Parallelism and Performance

nag_dgebrd (fO8kec) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgebrd (f08kec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The total number of floating-point operations is approximately 3n*(3m — n) if m > n or 3m*(3n —m) if
m < n.

Mark 24 f08kec.3

fO8kec NAG Library Manual

If m > n, it can be more efficient to first call nag_dgeqrf (f08aec) to perform a QR factorization of A,
and then to call nag dgebrd (fO8kec) to reduce the factor R to bidiagonal form. This requires
approximately 2n?(m + n) floating-point operations.

If m < n, it can be more efficient to first call nag_dgelqf (f08ahc) to perform an L(Q) factorization of A,
and then to call nag dgebrd (fO8kec) to reduce the factor L to bidiagonal form. This requires
approximately 2m?(m + n) operations.

To form the orthogonal matrices P! and/or Q nag dgebrd (f08kec) may be followed by calls to
nag_dorgbr (fO8kfc):

to form the m by m orthogonal matrix @
nag_dorgbr (order,Nag_FormQ,m,m,n,&a,pda,tauq,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgebrd (fO8kec);

to form the n by n orthogonal matrix PT
nag_dorgbr (order,Nag_FormP,n,n,m,&a,pda,taup,&fail)

but note that the first dimension of the array a, specified by the argument pda, must be at least n, which
may be larger than was required by nag dgebrd (fO8kec).

To apply @ or P to a real rectangular matrix C, nag_dgebrd (f08kec) may be followed by a call to
nag_dormbr (fO8kgc).

The complex analogue of this function is nag_zgebrd (fO8ksc).

10 Example
This example reduces the matrix A to bidiagonal form, where

-0.57 —-128 —-039 025
—1.93 1.08 —-0.31 -2.14
2.30 024 040 -0.35
—1.93 0.64 —-0.66 0.08
0.15 030 0.15 -—-2.13
—0.02 1.03 —1.43 0.50

A:

10.1 Program Text
/* nag_dgebrd (f£08kec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{
/* Scalars */
Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
Integer exit_status = 0;
NagError fail;

Nag_OrderType order;
/* Arrays */
double *a =0, *d =0, *e =0, *taup = 0, *tauq = 0;

#ifdef NAG_COLUMN_MAJOR

#define A(I, J) al(J - 1) * pda + I - 1]
order = Nag_ColMajor;

f08kec.4 Mark 24

../F08/f08aec.pdf
../F08/f08ahc.pdf
../F08/f08kfc.pdf
../F08/f08kfc.pdf
../F08/f08kfc.pdf
../F08/f08kgc.pdf
../F08/f08ksc.pdf

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8kec

#else

#define A(I, J) al(I - 1) * pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

printf("nag_dgebrd (f08kec) Example Program Results\n");
/* Skip heading in data file */

scanf ("s*["\n] ");

scanf ("%$1d%1d%*["\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

d_len = MIN(m, n);
e_len = MIN(m, n)-1;
taug_len = MIN(m, n);
taup_len = MIN(m, n)

7

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)) ||
! (taup = NAG_ALLOC(taup_len, double)) ||
! (tauqg = NAG_ALLOC(taug_len, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3)
scanf ("$1f", &A(i, j));
}

scanf ("s*["\n] ");

/* Reduce A to bidiagonal form */

/* nag_dgebrd (f08kec).
* Orthogonal reduction of real general rectangular matrix
* to bidiagonal form

*/
nag_dgebrd(order, m, n, a, pda, 4, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{

printf ("Error from nag_dgebrd (f08kec).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3

/* Print bidiagonal form */
printf ("\nDiagonal\n") ;
for (i = 1; i <= MIN(m, n); ++i)
printf("%9.4f%s", d[i-1], i%8 == 0?"\n":" ");
if (m >= n)
printf ("\nSuper-diagonal\n") ;
else
printf ("\nSub-diagonal\n") ;
for (i = 1; i <= MIN(m, n) - 1; ++1i)
printf ("%9.4f%s", el[i-1]1, i%8 == 0?"\n":" ");
printf ("\n");

END:

Mark 24 f08kec.5

f08kec

NAG_FREE
NAG_FREE

NAG_FREE
NAG_FREE

(a
(d
NAG_FREE (e
(t
(t

QU QY — = —

up) ;
uq) ;

return exit_status;

3
#undef A

10.2 Program Data

nag_dgebrd (f
6 4

-0.57 -1.28
-1.93 1.08
2.30 0.24
-1.93 0.64
0.15 0.30
-0.02 1.03

08kec)

-0.39
-0.31
0.40
-0.66
0.15
-1.43

10.3 Program Results

nag_dgebrd

Diagonal
3.6177

(£08kec)

2.4161

Super-diagonal

1.2587

1.5262

0.25
-2.14
-0.35

0.08
-2.13

0.50

Example Program Data

:Values of M and N

:End of matrix A

Example Program Results

-1.9213

-1.1895

-1.4265

NAG Library Manual

f08kec.6 (last)

Mark 24

	f08kec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Arguments
	order
	m
	n
	a
	pda
	d
	e
	tauq
	taup
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

