
NAG Library Function Document

nag_ztpqrt (f08bpc)

1 Purpose

nag_ztpqrt (f08bpc) computes the QR factorization of a complex mþ nð Þ by n triangular-pentagonal
matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_ztpqrt (Nag_OrderType order, Integer m, Integer n, Integer l,
Integer nb, Complex a[], Integer pda, Complex b[], Integer pdb,
Complex t[], Integer pdt, NagError *fail)

3 Description

nag_ztpqrt (f08bpc) forms the QR factorization of a complex mþ nð Þ by n triangular-pentagonal matrix
C,

C ¼ A
B

� �

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
m� lð Þ by n rectangular matrix B1 on top of an l by n upper trapezoidal matrix B2:

B ¼ B1

B2

� �
:

The upper trapezoidal matrix B2 consists of the first l rows of an n by n upper triangular matrix, where
0 � l � min m;nð Þ. If l ¼ 0, B is m by n rectangular; if l ¼ n and m ¼ n, B is upper triangular.

A recursive, explicitly blocked, QR factorization (see nag_zgeqrt (f08apc)) is performed on the matrix
C. The upper triangular matrix R, details of the unitary matrix Q, and further details (the block reflector
factors) of Q are returned.

Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and
nag_ztpqrt (f08bpc) performs the QR update operation from the inclusion of matrix B1.

For example, consider the QR factorization of an l by n matrix B̂ with l < n: B̂ ¼ Q̂R̂, R̂ ¼ R̂1 R̂2

� �
,

where R̂1 is l by l upper triangular and R̂2 is n� lð Þ by n rectangular (this can be performed by

nag_zgeqrt (f08apc)). Given an initial least-squares problem B̂X̂ ¼ Ŷ where X and Y are l by nrhs

matrices, we have R̂X̂ ¼ Q̂HŶ .

Now, adding an additional m� l rows to the original system gives the augmented least squares problem

BX ¼ Y

where B is an m by n matrix formed by adding m� l rows on top of R̂ and Y is an m by nrhs matrix

formed by adding m� l rows on top of Q̂HŶ .

nag_ztpqrt (f08bpc) can then be used to perform the QR factorization of the pentagonal matrix B; the n
by n matrix A will be zero on input and contain R on output.

In the case where B̂ is r by n, r � n, R̂ is n by n upper triangular (forming A) on top of r� n rows of
zeros (forming first r� n rows of B). Augmentation is then performed by adding rows to the bottom of
B with l ¼ 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.1

../F08/f08apc.pdf
../F08/f08apc.pdf

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads to
Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix B.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix
A.

Constraint: n � 0.

4: l – Integer Input

On entry: l, the number of rows of the trapezoidal part of B (i.e., B2).

Constraint: 0 � l � min m;nð Þ.

5: nb – Integer Input

On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR
factorization. See Section 9 for details.

Constraints:

nb � 1;
if n > 0, nb � n.

6: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least max 1;pda� nð Þ.
The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by n upper triangular matrix A.

On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

f08bpc NAG Library Manual

f08bpc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

7: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda � max 1;nð Þ.

8: b½dim� – Complex Input/Output

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n pentagonal matrix B composed of an m� lð Þ by n rectangular matrix B1

above an l by n upper trapezoidal matrix B2.

On exit: details of the unitary matrix Q.

9: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1;mð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nð Þ.

10: t½dim� – Complex Output

Note: the dimension, dim, of the array t must be at least

max 1;pdt� nð Þ when order ¼ Nag ColMajor;
max 1;nb� pdtð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix T is stored in

t½ j� 1ð Þ � pdtþ i� 1� when order ¼ Nag ColMajor;
t½ i� 1ð Þ � pdtþ j� 1� when order ¼ Nag RowMajor.

On exit: further details of the unitary matrix Q. The number of blocks is b ¼ k
nb

� �
, where

k ¼ min m;nð Þ and each block is of order nb except for the last block, which is of order
k� b� 1ð Þ � nb. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;T b. These are stored in the nb by n matrix T as T ¼ T1jT2j . . . jT b½ �.

11: pdt – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array t.

Constraints:

if order ¼ Nag ColMajor, pdt � nb;
if order ¼ Nag RowMajor, pdt � n.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INT_2

On entry, nb ¼ valueh i and n ¼ valueh i.
Constraint: nb � 1 and
if n > 0, nb � n.

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.
On entry, pdb ¼ valueh i and m ¼ valueh i.
Constraint: pdb � max 1;mð Þ.
On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdt ¼ valueh i and n ¼ valueh i.
Constraint: pdt � n.

On entry, pdt ¼ valueh i and nb ¼ valueh i.
Constraint: pdt � nb.

NE_INT_3

On entry, l ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: 0 � l � min m; nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_ztpqrt (f08bpc) is not threaded by NAG in any implementation.

nag_ztpqrt (f08bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

f08bpc NAG Library Manual

f08bpc.4 Mark 24

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ if
m < n.

The block size, nb, used by nag_ztpqrt (f08bpc) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb ¼ 64� min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To apply Q to an arbitrary complex rectangular matrix C, nag_ztpqrt (f08bpc) may be followed by a call
to nag_ztpmqrt (f08bqc). For example,

nag_ztpmqrt(Nag_ColMajor,Nag_LeftSide,Nag_Trans,m,p,n,l,nb,b,pdb,
t,pdt,c,pdc,&c(n+1,1),ldc,&fail)

forms C ¼ QHC, where C is mþ nð Þ by p.

To form the unitary matrix Q explicitly set p ¼ mþ n, initialize C to the identity matrix and make a call
to nag_ztpmqrt (f08bqc) as above.

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i

0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i

0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0
BBBBB@

1
CCCCCA

and

B ¼

�2:09þ 1:93i 3:26� 2:70i
3:34� 3:53i �6:22þ 1:16i
�4:94� 2:04i 7:94� 3:13i

0:17þ 4:23i 1:04� 4:26i
�5:19þ 3:63i �2:31� 2:12i

0:98þ 2:53i �1:39� 4:05i

0
BBBBB@

1
CCCCCA
:

A QR factorization is performed on the first 4 rows of A using nag_zgeqrt (f08apc) after which the first
4 rows of B are updated by applying QT using nag_zgemqrt (f08aqc). The remaining row is added by
performing a QR update using nag_ztpqrt (f08bpc); B is updated by applying the new QT using
nag_ztpmqrt (f08bqc); the solution is finally obtained by triangular solve using R from the updated QR.

10.1 Program Text

/* nag_ztpqrt (f08bpc) Example Program.
*
* Copyright 2013, Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.5

../F08/f08bqc.pdf
../F08/f08bqc.pdf
../F08/f08bqc.pdf
../F08/f08apc.pdf
../F08/f08aqc.pdf
../F08/f08bqc.pdf

#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double rnorm;
Integer exit_status = 0;
Integer pda, pdb, pdt;
Integer i, j, m, n, nb, nrhs;
/* Arrays */
Complex *a = 0, *b = 0, *c = 0, *t = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I-1]
#define B(I,J) b[(J-1)*pdb + I-1]
#define C(I,J) c[(J-1)*pdb + I-1]
#define T(I,J) t[(J-1)*pdt + I-1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
#define B(I,J) b[(I-1)*pdb + J-1]
#define C(I,J) c[(I-1)*pdb + J-1]
#define T(I,J) t[(I-1)*pdt + J-1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_ztpqrt (f08bpc) Example Program Results\n\n");
fflush(stdout);

/* Skip heading in data file*/
scanf("%*[^\n]");
scanf("%ld%ld%ld%*[^\n]", &m, &n, &nrhs);
nb = MIN(m, n);
if (!(a = NAG_ALLOC(m*n, Complex))||

!(b = NAG_ALLOC(m*nrhs, Complex))||
!(c = NAG_ALLOC(m*nrhs, Complex))||
!(t = NAG_ALLOC(nb*MIN(m, n), Complex)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pda = m;
pdb = m;
pdt = nb;

#else
pda = n;
pdb = nrhs;
pdt = MIN(m, n);

#endif

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

for (j = 1; j <= n; ++j)
scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);

scanf("%*[^\n]");

for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)

scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");

for (i = 1; i <= m; ++i)

f08bpc NAG Library Manual

f08bpc.6 Mark 24

for (j = 1; j <= nrhs; ++j)
C(i, j) = B(i, j);

/* nag_zgeqrt (f08apc).
* Compute the QR factorization of first n rows of A by recursive algorithm.
*/

nag_zgeqrt(order, n, n, nb, a, pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_zgeqrt (f08apc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_zgemqrt (f08aqc).
* Compute C = (C1) = (Q^H)*B, storing the result in C
* (C2)
* by applying Q^H from left.
*/

nag_zgemqrt(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, n, nb, a, pda, t,
pdt, c, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_zgemqrt (f08aqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)

B(i, j) = C(i, j);

/* nag_ztrtrs (f07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/

nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
c, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions using first n rows.
*/

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, c, pdb, Nag_BracketForm, "%7.4f",
"Solution(s) for n rows", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* nag_ztpqrt (f08bpc).
* Now add the remaining rows and perform QR update.
*/

nag_ztpqrt(order, m - n, n, 0, nb, a, pda, &A(n + 1, 1), pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ztpqrt (f08bpc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_ztpmqrt (f08bqc).
* Apply orthogonal transformations to C.
*/

nag_ztpmqrt(order, Nag_LeftSide, Nag_ConjTrans, m - n, nrhs, n, 0, nb,
&A(n + 1, 1), pda, t, pdt, b, pdb, &B(5, 1),pdb, &fail);

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.7

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztpmqrt (f08bqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_ztrtrs (f07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/

nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions.
*/

printf("\n");
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, b, pdb, Nag_BracketForm, "%7.4f",
"Least-squares solution(s) for all rows",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\n Square root(s) of the residual sum(s) of squares\n");
for (j=1; j<=nrhs; j++) {

/* nag_zge_norm (f16uac).
* Compute and print estimate of the square root of the residual
* sum of squares.
*/

nag_zge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(n + 1,j), pdb, &rnorm,
&fail);

if (fail.code != NE_NOERROR) {
printf("\nError from nag_zge_norm (f16uac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
printf(" %11.2e ", rnorm);

}
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(t);

return exit_status;
}

10.2 Program Data

nag_ztpqrt (f08bpc) Example Program Data

6 4 2 : m, n and nrhs

(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)

f08bpc NAG Library Manual

f08bpc.8 Mark 24

(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) : matrix A

(-2.09, 1.93) (3.26,-2.70)
(3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) (7.94,-3.13)
(0.17, 4.23) (1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
(0.98, 2.53) (-1.39,-4.05) : matrix B

10.3 Program Results

nag_ztpqrt (f08bpc) Example Program Results

Solution(s) for n rows
1 2

1 (-0.5091,-1.2428) (0.7569, 1.4384)
2 (-2.3789, 2.8651) (5.1727,-3.6193)
3 (1.4634,-2.2064) (-2.6613, 2.1339)
4 (0.4701, 2.6964) (-2.6933, 0.2724)

Least-squares solution(s) for all rows
1 2

1 (-0.5044,-1.2179) (0.7629, 1.4529)
2 (-2.4281, 2.8574) (5.1570,-3.6089)
3 (1.4872,-2.1955) (-2.6518, 2.1203)
4 (0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88e-02 1.87e-01

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.9 (last)

	f08bpc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Elmroth and Gustavson (2000)
	Golub and Van Loan (2012)

	5 Arguments
	order
	m
	n
	l
	nb
	a
	pda
	b
	pdb
	t
	pdt
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

