
NAG Library Function Document

nag_ztpqrt (f08bpc)

1 Purpose

nag_ztpqrt (f08bpc) computes the QR factorization of a complex mþ nð Þ by n triangular-pentagonal
matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_ztpqrt (Nag_OrderType order, Integer m, Integer n, Integer l,
Integer nb, Complex a[], Integer pda, Complex b[], Integer pdb,
Complex t[], Integer pdt, NagError *fail)

3 Description

nag_ztpqrt (f08bpc) forms the QR factorization of a complex mþ nð Þ by n triangular-pentagonal matrix
C,

C ¼ A
B

� �

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
m� lð Þ by n rectangular matrix B1 on top of an l by n upper trapezoidal matrix B2:

B ¼ B1

B2

� �
:

The upper trapezoidal matrix B2 consists of the first l rows of an n by n upper triangular matrix, where
0 � l � min m;nð Þ. If l ¼ 0, B is m by n rectangular; if l ¼ n and m ¼ n, B is upper triangular.

A recursive, explicitly blocked, QR factorization (see nag_zgeqrt (f08apc)) is performed on the matrix
C. The upper triangular matrix R, details of the unitary matrix Q, and further details (the block reflector
factors) of Q are returned.

Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and
nag_ztpqrt (f08bpc) performs the QR update operation from the inclusion of matrix B1.

For example, consider the QR factorization of an l by n matrix B̂ with l < n: B̂ ¼ Q̂R̂, R̂ ¼ R̂1 R̂2

� �
,

where R̂1 is l by l upper triangular and R̂2 is n� lð Þ by n rectangular (this can be performed by

nag_zgeqrt (f08apc)). Given an initial least-squares problem B̂X̂ ¼ Ŷ where X and Y are l by nrhs

matrices, we have R̂X̂ ¼ Q̂HŶ .

Now, adding an additional m� l rows to the original system gives the augmented least squares problem

BX ¼ Y

where B is an m by n matrix formed by adding m� l rows on top of R̂ and Y is an m by nrhs matrix

formed by adding m� l rows on top of Q̂HŶ .

nag_ztpqrt (f08bpc) can then be used to perform the QR factorization of the pentagonal matrix B; the n
by n matrix A will be zero on input and contain R on output.

In the case where B̂ is r by n, r � n, R̂ is n by n upper triangular (forming A) on top of r� n rows of
zeros (forming first r� n rows of B). Augmentation is then performed by adding rows to the bottom of
B with l ¼ 0.
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5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix B.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix
A.

Constraint: n � 0.

4: l – Integer Input

On entry: l, the number of rows of the trapezoidal part of B (i.e., B2).

Constraint: 0 � l � min m;nð Þ.

5: nb – Integer Input

On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR
factorization. See Section 9 for details.

Constraints:

nb � 1;
if n > 0, nb � n.

6: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least max 1;pda� nð Þ.
The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by n upper triangular matrix A.

On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.
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7: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda � max 1;nð Þ.

8: b½dim� – Complex Input/Output

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n pentagonal matrix B composed of an m� lð Þ by n rectangular matrix B1

above an l by n upper trapezoidal matrix B2.

On exit: details of the unitary matrix Q.

9: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1;mð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nð Þ.

10: t½dim� – Complex Output

Note: the dimension, dim, of the array t must be at least

max 1;pdt� nð Þ when order ¼ Nag ColMajor;
max 1;nb� pdtð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix T is stored in

t½ j� 1ð Þ � pdtþ i� 1� when order ¼ Nag ColMajor;
t½ i� 1ð Þ � pdtþ j� 1� when order ¼ Nag RowMajor.

On exit: further details of the unitary matrix Q. The number of blocks is b ¼ k
nb

� �
, where

k ¼ min m;nð Þ and each block is of order nb except for the last block, which is of order
k� b� 1ð Þ � nb. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;T b. These are stored in the nb by n matrix T as T ¼ T1jT2j . . . jT b½ �.

11: pdt – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array t.

Constraints:

if order ¼ Nag ColMajor, pdt � nb;
if order ¼ Nag RowMajor, pdt � n.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
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6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INT_2

On entry, nb ¼ valueh i and n ¼ valueh i.
Constraint: nb � 1 and
if n > 0, nb � n.

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.
On entry, pdb ¼ valueh i and m ¼ valueh i.
Constraint: pdb � max 1;mð Þ.
On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdt ¼ valueh i and n ¼ valueh i.
Constraint: pdt � n.

On entry, pdt ¼ valueh i and nb ¼ valueh i.
Constraint: pdt � nb.

NE_INT_3

On entry, l ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: 0 � l � min m; nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_ztpqrt (f08bpc) is not threaded by NAG in any implementation.

nag_ztpqrt (f08bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ if
m < n.

The block size, nb, used by nag_ztpqrt (f08bpc) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb ¼ 64� min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To apply Q to an arbitrary complex rectangular matrix C, nag_ztpqrt (f08bpc) may be followed by a call
to nag_ztpmqrt (f08bqc). For example,

nag_ztpmqrt(Nag_ColMajor,Nag_LeftSide,Nag_Trans,m,p,n,l,nb,b,pdb,
t,pdt,c,pdc,&c(n+1,1),ldc,&fail)

forms C ¼ QHC, where C is mþ nð Þ by p.

To form the unitary matrix Q explicitly set p ¼ mþ n, initialize C to the identity matrix and make a call
to nag_ztpmqrt (f08bqc) as above.

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i

0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i

0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0
BBBBB@

1
CCCCCA

and

B ¼

�2:09þ 1:93i 3:26� 2:70i
3:34� 3:53i �6:22þ 1:16i
�4:94� 2:04i 7:94� 3:13i

0:17þ 4:23i 1:04� 4:26i
�5:19þ 3:63i �2:31� 2:12i

0:98þ 2:53i �1:39� 4:05i

0
BBBBB@

1
CCCCCA
:

A QR factorization is performed on the first 4 rows of A using nag_zgeqrt (f08apc) after which the first
4 rows of B are updated by applying QT using nag_zgemqrt (f08aqc). The remaining row is added by
performing a QR update using nag_ztpqrt (f08bpc); B is updated by applying the new QT using
nag_ztpmqrt (f08bqc); the solution is finally obtained by triangular solve using R from the updated QR.

10.1 Program Text

/* nag_ztpqrt (f08bpc) Example Program.
*
* Copyright 2013, Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
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#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double rnorm;
Integer exit_status = 0;
Integer pda, pdb, pdt;
Integer i, j, m, n, nb, nrhs;
/* Arrays */
Complex *a = 0, *b = 0, *c = 0, *t = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I-1]
#define B(I,J) b[(J-1)*pdb + I-1]
#define C(I,J) c[(J-1)*pdb + I-1]
#define T(I,J) t[(J-1)*pdt + I-1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
#define B(I,J) b[(I-1)*pdb + J-1]
#define C(I,J) c[(I-1)*pdb + J-1]
#define T(I,J) t[(I-1)*pdt + J-1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_ztpqrt (f08bpc) Example Program Results\n\n");
fflush(stdout);

/* Skip heading in data file*/
scanf("%*[^\n]");
scanf("%ld%ld%ld%*[^\n]", &m, &n, &nrhs);
nb = MIN(m, n);
if (!(a = NAG_ALLOC(m*n, Complex))||

!(b = NAG_ALLOC(m*nrhs, Complex))||
!(c = NAG_ALLOC(m*nrhs, Complex))||
!(t = NAG_ALLOC(nb*MIN(m, n), Complex)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pda = m;
pdb = m;
pdt = nb;

#else
pda = n;
pdb = nrhs;
pdt = MIN(m, n);

#endif

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);

scanf("%*[^\n]");

for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)

scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");

for (i = 1; i <= m; ++i)
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for (j = 1; j <= nrhs; ++j)
C(i, j) = B(i, j);

/* nag_zgeqrt (f08apc).
* Compute the QR factorization of first n rows of A by recursive algorithm.
*/

nag_zgeqrt(order, n, n, nb, a, pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_zgeqrt (f08apc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_zgemqrt (f08aqc).
* Compute C = (C1) = (Q^H)*B, storing the result in C
* (C2)
* by applying Q^H from left.
*/

nag_zgemqrt(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, n, nb, a, pda, t,
pdt, c, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_zgemqrt (f08aqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)

B(i, j) = C(i, j);

/* nag_ztrtrs (f07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/

nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
c, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions using first n rows.
*/

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, c, pdb, Nag_BracketForm, "%7.4f",
"Solution(s) for n rows", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* nag_ztpqrt (f08bpc).
* Now add the remaining rows and perform QR update.
*/

nag_ztpqrt(order, m - n, n, 0, nb, a, pda, &A(n + 1, 1), pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ztpqrt (f08bpc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_ztpmqrt (f08bqc).
* Apply orthogonal transformations to C.
*/

nag_ztpmqrt(order, Nag_LeftSide, Nag_ConjTrans, m - n, nrhs, n, 0, nb,
&A(n + 1, 1), pda, t, pdt, b, pdb, &B(5, 1),pdb, &fail);

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Mark 24 f08bpc.7



if (fail.code != NE_NOERROR) {
printf("Error from nag_ztpmqrt (f08bqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_ztrtrs (f07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/

nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions.
*/

printf("\n");
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, b, pdb, Nag_BracketForm, "%7.4f",
"Least-squares solution(s) for all rows",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\n Square root(s) of the residual sum(s) of squares\n");
for ( j=1; j<=nrhs; j++) {

/* nag_zge_norm (f16uac).
* Compute and print estimate of the square root of the residual
* sum of squares.
*/

nag_zge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(n + 1,j), pdb, &rnorm,
&fail);

if (fail.code != NE_NOERROR) {
printf("\nError from nag_zge_norm (f16uac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
printf(" %11.2e ", rnorm);

}
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(t);

return exit_status;
}

10.2 Program Data

nag_ztpqrt (f08bpc) Example Program Data

6 4 2 : m, n and nrhs

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
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( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

(-2.09, 1.93) ( 3.26,-2.70)
( 3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) ( 7.94,-3.13)
( 0.17, 4.23) ( 1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
( 0.98, 2.53) (-1.39,-4.05) : matrix B

10.3 Program Results

nag_ztpqrt (f08bpc) Example Program Results

Solution(s) for n rows
1 2

1 (-0.5091,-1.2428) ( 0.7569, 1.4384)
2 (-2.3789, 2.8651) ( 5.1727,-3.6193)
3 ( 1.4634,-2.2064) (-2.6613, 2.1339)
4 ( 0.4701, 2.6964) (-2.6933, 0.2724)

Least-squares solution(s) for all rows
1 2

1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88e-02 1.87e-01
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