f08 — Least-squares and Eigenvalue Problems (LAPACK) fO08bpc

NAG Library Function Document
nag_ztpqrt (f08bpc)

1 Purpose

nag_ztpqrt (fO8bpc) computes the QR factorization of a complex (m + n) by n triangular-pentagonal
matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_ztpqgrt (Nag_OrderType order, Integer m, Integer n, Integer 1,
Integer nb, Complex al[], Integer pda, Complex b[], Integer pdb,
Complex t[], Integer pdt, NagError *fail)

3 Description

nag_ztpqrt (f08bpc) forms the QR factorization of a complex (m + n) by n triangular-pentagonal matrix

o~ (8

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
(m —1) by n rectangular matrix B; on top of an [by n upper trapezoidal matrix Bj:

B:<g;>.

The upper trapezoidal matrix B, consists of the first [rows of an n by n upper triangular matrix, where
0 <! <min(m,n). If I =0, B is m by n rectangular; if [=n and m = n, B is upper triangular.

b

A recursive, explicitly blocked, QR factorization (see nag_zgeqrt (f08apc)) is performed on the matrix
C. The upper triangular matrix R, details of the unitary matrix (), and further details (the block reflector
factors) of @) are returned.

Typically the matrix A or B, contains the matrix R from the QR factorization of a subproblem and
nag_ztpqrt (f08bpc) performs the QR update operation from the inclusion of matrix Bj.

For example, consider the QR factorization of an [by n matrix Bwithl < n: B= QR, R= (R R,),
where R, is [by [upper triangular and R, is (n —1) by n rectangular (this can be performed by

nag_zgeqrt (f08apc)). Given an initial least-squares problem BX =Y where X and Y are [by nrhs
matrices, we have RX = QY.

Now, adding an additional m — [rows to the original system gives the augmented least squares problem
BX =Y

where B is an m by n matrix formed by adding m — [rows on top of R and Y is an m by nrhs matrix

formed by adding m — [rows on top of QUY.

nag_ztpqrt (f08bpc) can then be used to perform the QR factorization of the pentagonal matrix B; the n
by n matrix A will be zero on input and contain R on output.

In the case where B is 7 by n, 7 > n, R is n by n upper triangular (forming A) on top of r — n rows of
zeros (forming first » — n rows of B). Augmentation is then performed by adding rows to the bottom of
B with [= 0.

Mark 24 f08bpc. 1

../F08/f08apc.pdf
../F08/f08apc.pdf

f08bpc NAG Library Manual

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads to
Better Performance IBM Journal of Research and Development. (Volume 44) 4 605624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

S Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix B.

Constraint: m > 0.

3: n — Integer Input

On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix
A.

Constraint: m > 0.

4: 1 — Integer Input
On entry: l, the number of rows of the trapezoidal part of B (i.e., By).

Constraint: 0 <1< min(m,n).

5: nb — Integer Input

On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR
factorization. See Section 9 for details.

Constraints:
nb > 1;
if n >0, nb <n.
6: a[dim] — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda X n).
The (7, j)th element of the matrix A is stored in

a[(j — 1) x pda + ¢ — 1] when order = Nag_ColMajor;
a[(i — 1) x pda + j — 1] when order = Nag_RowMajor.

On entry: the n by n upper triangular matrix A.

On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

f08bpc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bpc

10:

11:

pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda > max(1,n).

b[dim] — Complex Input/Output
Note: the dimension, dim, of the array b must be at least

max (1, pdb x n) when order = Nag_ColMajor;
max(1, m x pdb) when order = Nag_RowMajor.

The (i, j)th element of the matrix B is stored in

b[(j — 1) x pdb + i — 1] when order = Nag_ColMajor;
b[(i — 1) x pdb + j — 1] when order = Nag_RowMajor.

On entry: the m by n pentagonal matrix B composed of an (m — [) by n rectangular matrix B
above an [by n upper trapezoidal matrix B;.

On exit: details of the unitary matrix Q.

pdb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1, m);

if order = Nag RowMajor, pdb > max(1,n).
t{dim] — Complex Output
Note: the dimension, dim, of the array t must be at least

max(1, pdt x n) when order = Nag_ColMajor;
max(1,nb x pdt) when order = Nag_RowMajor.

The (i, j)th element of the matrix T is stored in

t[(j — 1) x pdt+ ¢ — 1] when order = Nag_ColMajor;
t[(i — 1) x pdt + j — 1] when order = Nag_RowMajor.

On exit: further details of the unitary matrix (. The number of blocks is b= [£], where
k = min(m,n) and each block is of order nmb except for the last block, which is of order
k— (b— 1) x nb. For each of the blocks, an upper triangular block reflector factor is computed:
T,,T,,..., Ty These are stored in the nb by n matrix 7" as T = [T|T3|...|T].

pdt — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array t.

Constraints:
if order = Nag_ColMajor, pdt > nb;
if order = Nag_RowMajor, pdt > n.
fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Mark 24 f08bpc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

f08bpc NAG Library Manual

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.
NE_INT_2

On entry, nb = (value) and n = (value).
Constraint: nb > 1 and
if n >0, nb <n.

On entry, pda = (value) and n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value) and m = (value).
Constraint: pdb > max(1, m).

On entry, pdb = (value) and n = (value).
Constraint: pdb > max(1,n).

On entry, pdt = (value) and n = (value).
Constraint: pdt > n.

On entry, pdt = (value) and nb = (value).
Constraint: pdt > nb.

NE_INT 3

On entry, 1 = (value), m = (value) and n = (value).
Constraint: 0 <1< min(m,n).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy
The computed factorization is the exact factorization of a nearby matrix (A + E), where
1E]l; = O(e)[|Allz,

and € is the machine precision.

8 Parallelism and Performance

nag_ztpqrt (f08bpc) is not threaded by NAG in any implementation.

nag_ztpqrt (fO8bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

f08bpc.4 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bpc

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The total number of floating-point operations is approximately 3n*(3m — n) if m > n or 3m?(3n — m) if
m < n.

The block size, nb, used by nag ztpqrt (fO8bpc) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb = 64 < min(m,n) is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To apply () to an arbitrary complex rectangular matrix C, nag_ztpqrt (f08bpc) may be followed by a call
to nag_ztpmgqrt (f08bqc). For example,

nag_ztpmgrt (Nag_ColMajor,Nag_LeftSide,Nag_Trans,m,p,n,l,nb,b,pdb,
t,pdt,c,pdc,&c(n+1,1),1dc,&fail)

forms C' = QUC, where C is (m +n) by p.

To form the unitary matrix) explicitly set p = m + n, initialize C' to the identity matrix and make a call
to nag_ztpmgqrt (f08bqc) as above.

10 Example

This example finds the basic solutions for the linear least squares problems
minimize ||Az; — bl,, i=1,2

where b; and b, are the columns of the matrix B,

0.96 —0.81: —0.0340.96: —09142.06c0 —0.0540.41:
—098 +198 —-120+0.19¢ —0.66+0.42¢ —0.81 +0.56¢
0.62 — 0.46¢ 1.01 4-0.02¢ 0.63 -0.17: —1.11 4 0.60z
—0.37 4 0.38: 0.19 -0.54: —0.98 —0.367 0.22 —0.20¢
0.83 +0.51¢ 0.20+0.01¢ —0.17 — 0.463 1.47 +1.59:
1.08 —0.28: 0.20 —0.12¢ —0.07 4-1.23% 0.26 + 0.26¢

and

—2.09 4 1.93¢ 3.26 —2.70¢
334 -3.53: —6.2241.16¢
—4.94 —2.04¢ 7.94 —3.13¢
0.17 +4.234 1.04 — 4.26¢
—5.1943.637 —2.31 —2.12¢
0.98 +2.53t —1.39 —4.05:

B:

A QR factorization is performed on the first 4 rows of A using nag_zgeqrt (f08apc) after which the first
4 rows of B are updated by applying Q7 using nag_zgemgqrt (f08aqc). The remaining row is added by
performing a QR update using nag_ztpqrt (fO8bpc); B is updated by applying the new Q7 using
nag_ztpmgqrt (f08bqc); the solution is finally obtained by triangular solve using R from the updated QR.

10.1 Program Text

/* nag_ztpqgrt (£08bpc) Example Program.
*
* Copyright 2013, Numerical Algorithms Group.
*

* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>

Mark 24 f08bpc.5

../F08/f08bqc.pdf
../F08/f08bqc.pdf
../F08/f08bqc.pdf
../F08/f08apc.pdf
../F08/f08aqc.pdf
../F08/f08bqc.pdf

f08bpc

#include <nagf08.h>
#include <nagfl6.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
double rnorm;
Integer exit_status = 0;
Integer pda, pdb, pdt;
Integer i, j, m, n, nb, nrhs;
/* Arrays */
Complex *a = 0, *b =0, *c = 0, *t = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I-1]

#define B(I,J) b[(J 1)*pdb + I-1]

#define C(I,J) c[(J-1)*pdb + I-1]

#define T(I,J) t[(J 1) *pdt + I-1]
order = Nag_ColMajor,

#else

#define A(I,J) al(I-1)*pda + J-1]

#define B(I,J) b[(I-1)*pdb + J-1]

#define C(I,J) c[(I-1)*pdb + J-1]

#define T(I,J) t[(I-1)*pdt + J-1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

printf("nag_ztpgrt (£08bpc) Example Program Results\n\n")

fflush(stdout) ;

/* Skip heading in data file*/

scanf ("$*["\n]"

scanf("°ld°ld°ld°*[‘\n]", &m, &n, &nrhs);
nb = MIN(m, n);

if (!(a = NAG_ALLOC (m*n, Complex)) ||
1 (b = NAG_ALLOC(m*nrhs, Complex)) ||
! (c = NAG_ALLOC(m*nrhs, Complex)) ||
1 (t = NAG_ALLOC (nb*MIN(m, n), Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;
pdt = nb;
#else
pda = n;
pdb = nrhs;
pdt = MIN(m, n);
#endif

/* Read A and B from data file */

for (i = 1; i <= m; ++1i)
for (j = 1; j <= n; ++3)
scanf (" (%1f , %1f)", &A(i, j).re, &A(i, Jj).im);
scanf ("$*[*\nl");
for (i = 1; 1 <= m; ++1)
for (j = 1; j <= nrhs; ++3)
scanf (" (%1f , %1f)", &B(i, j).re, &B(i, Jj).im);
scanf ("s*["\nl");

for (i = 1; i <= m; ++1i)

f08bpc.6

NAG Library Manual

Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK)

N

for (j = 1; j <= nrhs; ++3j)
c(i, j) = B(i, 3J)

2

/* nag_zgeqrt (f£08apc).

f08bpc

* Compute the QR factorization of first n rows of A by recursive algorithm.

*
/
nag_zgeqrt(order, n, n, nb, a, pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_zgeqrt (£08apc).\n%s\n", fail.message);
exit_status = 1;
goto END;
b

/* nag_zgemgrt (f08aqgc).
* Compute C = (Cl) = (Q"H)*B, storing the result in C
* (C2)
* by applying Q"H from left.
*

nag_zgemqgrt (order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, n, nb,
pdt, ¢, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_zgemgrt (f08aqc).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}
for (i = 1; 1 <= n; ++1)
for (j = 1; j <= nrhs; ++3j)
B(i, j) = C(i, 3);

/* nag_ztrtrs (f£07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/

nag_ztrtrs(order, Nag_Upper, Nag NoTrans, Nag_NonUnitDiag, n, nrhs,

c, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf ("Error from nag_ztrtrs (£07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions using first n rows.

*/

al pdal tl

a, pda,

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, c¢, pdb, Nag_BracketForm, "%7.4f",

"Solution(s) for n rows", Nag_IntegerLabels,

0, Nag_IntegerLabels, 0, 80, 0, O,
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message) ;
exit_status = 1;
goto END;
¥

/* nag_ztpgrt (£08bpc).
* Now add the remaining rows and perform QR update.

*/

nag_ztpgrt(order, m - n, n, 0, nb, a, pda, &A(n + 1, 1), pda, t, pdt,

if (fail.code != NE_NOERROR) {
printf ("Error from nag_ztpgrt (£08bpc).\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* nag_ztpmgrt (£08bqgc).
* Apply orthogonal transformations to C.
*/

nag_ztpmgrt (order, Nag_LeftSide, Nag_ConjTrans, m - n, nrhs, n,

&A(n + 1, 1), pda, t, pdt, b, pdb, &B(5, 1),pdb, &fail);

Mark 24

&fail);

s&fail);

f08bpc.7

f08bpc NAG Library Manual

if (fail.code != NE_NOERROR) {
printf ("Error from nag_ztpmgrt (£08bgc).\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* nag_ztrtrs (f07tsc).
* Compute least-squares solutions for first n rows
* by backsubstitution in R*X = C1.
*/
nag_ztrtrs(order, Nag_Upper, Nag NoTrans, Nag NonUnitDiag, n, nrhs, a, pda,
b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ztrtrs (£07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions.
*/
printf ("\n");
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, b, pdb, Nag_BracketForm, "%7.4f",
"Least-squares solution(s) for all rows",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

printf("\n Square root(s) of the residual sum(s) of squares\n");
for (j=1; j<=nrhs; j++) {
/* nag_zge_norm (fl6uac).
* Compute and print estimate of the square root of the residual
* sum of squares.

*/
nag_zge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(n + 1,j), pdb, &rnorm,
s&fail);
if (fail.code != NE_NOERROR) {
printf ("\nError from nag_zge_norm (flouac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf(" %11.2e ", rnorm);
3
printf ("\n");
END:
NAG_FREE (a) ;
NAG_FREE (b) ;
NAG_FREE(c) ;
NAG_FREE (t) ;

’
return exit_status;

}

10.2 Program Data

nag_ztpgrt (f£08bpc) Example Program Data

6 4 2 : m, n and nrhs
(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)

f08bpc.8 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bpc

(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) : matrix A

(-2.09, 1.93) (3.26,-2.70)

(3.34,-3.53) (-6.22, 1.16)

(-4.94,-2.04) (7.94,-3.13)

(0.17, 4.23) (1.04,-4.26)

(-5.19, 3.63) (-2.31,-2.12)

(0.98, 2.53) (-1.39,-4.05) : matrix B

10.3 Program Results
nag_ztpgrt (£08bpc) Example Program Results

Solution(s) for n rows

2
0.7569, 1.4384)
5.1727,-3.6193)
2.6613, 2.1339)
2.6933, 0.2724)

Least-squares solution(s) for all rows
1
0.5044,-1.2179) (
2.4281, 2.8574) (
1.4872,-2.1955) (-
0.4537, 2.6904) (-

2
0.7629, 1.4529)
5.1570,-3.6089)
2.6518, 2.1203)
2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88e-02 1.87e-01

Mark 24 f08bpc.9 (last)

	f08bpc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Elmroth and Gustavson (2000)
	Golub and Van Loan (2012)

	5 Arguments
	order
	m
	n
	l
	nb
	a
	pda
	b
	pdb
	t
	pdt
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

