
NAG Library Function Document

nag_dgeqpf (f08bec)

1 Purpose

nag_dgeqpf (f08bec) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqpf (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, Integer jpvt[], double tau[], NagError *fail)

3 Description

nag_dgeqpf (f08bec) forms the QR factorization, with column pivoting, of an arbitrary rectangular real
m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array a represents a
QR factorization of the first k columns of the permuted matrix AP .

The function allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

Mark 24 f08bec.1

../F08/f08intro.pdf

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

6: jpvt½dim� – Integer Input/Output

Note: the dimension, dim, of the array jpvt must be at least max 1;nð Þ.
On entry: if jpvt½i� 1� 6¼ 0, then the i th column of A is moved to the beginning of AP before
the decomposition is computed and is fixed in place during the computation. Otherwise, the i th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if jpvt½i� 1� ¼ k, then the kth
column of A is moved to become the i th column of AP ; in other words, the columns of AP are
the columns of A in the order jpvt½0�; jpvt½1�; . . . ; jpvt½n� 1�.

f08bec NAG Library Manual

f08bec.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

7: tau½min m; nð Þ� – double Output

On exit: further details of the orthogonal matrix Q.

8: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_dgeqpf (f08bec) is not threaded by NAG in any implementation.

nag_dgeqpf (f08bec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

Mark 24 f08bec.3

../GENINT/essint.pdf
../GENINT/essint.pdf

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ if
m < n.

To form the orthogonal matrix Q nag_dgeqpf (f08bec) may be followed by a call to nag_dorgqr (f08afc):

nag_dorgqr(order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqpf (f08bec).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_dorgqr(order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary real rectangular matrix C, nag_dgeqpf (f08bec) may be followed by a call to
nag_dormqr (f08agc). For example,

nag_dormqr(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
+ &c,pdc,&fail)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag_zgeqpf (f08bsc).

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27

0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0
BBBBB@

1
CCCCCA

and B ¼

�0:01 �0:04
0:04 �0:03
0:05 0:01
�0:03 �0:02

0:02 0:05
�0:06 0:07

0
BBBBB@

1
CCCCCA
:

Here A is approximately rank-deficient, and hence it is preferable to use nag_dgeqpf (f08bec) rather than
nag_dgeqrf (f08aec).

10.1 Program Text

/* nag_dgeqpf (f08bec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double tol;
Integer i, j, jpvt_len, k, m, n, nrhs;

f08bec NAG Library Manual

f08bec.4 Mark 24

../F08/f08afc.pdf
../F08/f08afc.pdf
../F08/f08afc.pdf
../F08/f08agc.pdf
../F08/f08agc.pdf
../F08/f08agc.pdf
../F08/f08aec.pdf
../F08/f08bsc.pdf
../F08/f08aec.pdf
../F08/f08aec.pdf

Integer pda, pdb, pdx, tau_len;
Integer exit_status = 0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a = 0, *b = 0, *tau = 0, *x = 0;
Integer *jpvt = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define X(I, J) x[(J - 1) * pdx + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define X(I, J) x[(I - 1) * pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgeqpf (f08bec) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;
pdx = m;

#else
pda = n;
pdb = nrhs;
pdx = nrhs;

#endif
tau_len = MIN(m, n);
jpvt_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||

!(b = NAG_ALLOC(m * nrhs, double)) ||
!(tau = NAG_ALLOC(tau_len, double)) ||
!(x = NAG_ALLOC(m * nrhs, double)) ||
!(jpvt = NAG_ALLOC(jpvt_len, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

scanf("%lf", &A(i, j));
}

scanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= nrhs; ++j)

scanf("%lf", &B(i, j));
}

scanf("%*[^\n] ");

/* Initialize JPVT to be zero so that all columns are free */
/* nag_iload (f16dbc).
* Broadcast scalar into integer vector
*/

nag_iload(n, 0, jpvt, 1, &fail);
/* Compute the QR factorization of A */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

Mark 24 f08bec.5

/* nag_dgeqpf (f08bec).
* QR factorization of real general rectangular matrix with
* column pivoting
*/

nag_dgeqpf(order, m, n, a, pda, jpvt, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_dgeqpf (f08bec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Choose TOL to reflect the relative accuracy of the input data */
tol = 0.01;

/* Determine which columns of R to use */
for (k = 1; k <= n; ++k)

{
if (ABS(A(k, k)) <= tol * ABS(A(1, 1)))

break;
}

--k;

/* Compute C = (Q**T)*B, storing the result in B */

/* nag_dormqr (f08agc).
* Apply orthogonal transformation determined by nag_dgeqrf
* (f08aec) or nag_dgeqpf (f08bec)
*/

nag_dormqr(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_dormqr (f08agc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute least-squares solution by backsubstitution in R*B = C */

/* nag_dtrtrs (f07tec).
* Solution of real triangular system of linear equations,
* multiple right-hand sides
*/

nag_dtrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k, nrhs,
a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_dtrtrs (f07tec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
for (i = k + 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

B(i, j) = 0.0;
}

/* Unscramble the least-squares solution stored in B */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

X(jpvt[i - 1], j) = B(i, j);
}

/* Print least-squares solution */
/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x,

f08bec NAG Library Manual

f08bec.6 Mark 24

pdx, "Least-squares solution", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(tau);
NAG_FREE(x);
NAG_FREE(jpvt);
return exit_status;

}

10.2 Program Data

nag_dgeqpf (f08bec) Example Program Data
6 5 2 :Values of M, N and NRHS

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A
-0.01 -0.04
0.04 -0.03
0.05 0.01

-0.03 -0.02
0.02 0.05

-0.06 0.07 :End of matrix B

10.3 Program Results

nag_dgeqpf (f08bec) Example Program Results

Least-squares solution
1 2

1 -0.0370 -0.0044
2 0.0647 -0.0335
3 0.0000 0.0000
4 -0.0515 0.0018
5 0.0066 0.0102

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bec

Mark 24 f08bec.7 (last)

	f08bec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Arguments
	order
	m
	n
	a
	pda
	jpvt
	tau
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

