
NAG Library Function Document

nag_zcgesv (f07aqc)

1 Purpose

nag_zcgesv (f07aqc) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n matrix and X and B are n by r matrices.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_zcgesv (Nag_OrderType order, Integer n, Integer nrhs, Complex a[],
Integer pda, Integer ipiv[], const Complex b[], Integer pdb,
Complex x[], Integer pdx, Integer *iter, NagError *fail)

3 Description

nag_zcgesv (f07aqc) first attempts to factorize the matrix in single precision and use this factorization
within an iterative refinement procedure to produce a solution with double precision accuracy. If the
approach fails the method switches to a double precision factorization and solve.

The iterative refinement process is stopped if

iter > itermax;

where iter is the number of iterations carried out thus far and itermax is the maximum number of
iterations allowed, which is fixed at 30 iterations. The process is also stopped if for all right-hand sides
we have

residk k <
ffiffiffi
n
p

xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the 1-operator-
norm of the matrix A and � is the machine precision returned by nag_machine_precision (X02AJC).

The iterative refinement strategy used by nag_zcgesv (f07aqc) can be more efficient than the
corresponding direct full precision algorithm. Since this strategy must perform iterative refinement on
each right-hand side, any efficiency gains will reduce as the number of right-hand sides increases.
Conversely, as the matrix size increases the cost of these iterative refinements become less significant
relative to the cost of factorization. Thus, any efficiency gains will be greatest for a very small number of
right-hand sides and for large matrix sizes. The cut-off values for the number of right-hand sides and
matrix size, for which the iterative refinement strategy performs better, depends on the relative
performance of the reduced and full precision factorization and back-substitution. For now, nag_zcgesv
(f07aqc) always attempts the iterative refinement strategy first; you are advised to compare the
performance of nag_zcgesv (f07aqc) with that of its full precision counterpart nag_zgesv (f07anc) to
determine whether this strategy is worthwhile for your particular problem dimensions.

f07 – Linear Equations (LAPACK) f07aqc

Mark 24 f07aqc.1

../X02/x02ajc.pdf
../F07/f07anc.pdf


4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Buttari A, Dongarra J, Langou J, Langou J, Luszczek P and Kurzak J (2007) Mixed precision iterative
refinement techniques for the solution of dense linear systems International Journal of High Performance
Computing Applications

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: n – Integer Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: n � 0.

3: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least max 1;pda� nð Þ.
The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by n coefficient matrix A.

On exit: if iterative refinement has been successfully used (i.e., if fail:code ¼ NE_NOERROR and
iter � 0), then A is unchanged. If double precision factorization has been used (when fail:code ¼
NE_NOERROR and iter < 0), A contains the factors L and U from the factorization A ¼ PLU ;
the unit diagonal elements of L are not stored.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda � max 1;nð Þ.

6: ipiv½n� – Integer Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row ipiv½i� 1�. ipiv½i� 1� ¼ i indicates a
row interchange was not required. ipiv corresponds either to the single precision factorization (if
fail:code ¼ NE_NOERROR and iter � 0) or to the double precision factorization (if fail:code ¼
NE_NOERROR and iter < 0).

f07aqc NAG Library Manual

f07aqc.2 Mark 24

http://www.netlib.org/lapack/lug
../GENINT/essint.pdf
../GENINT/essint.pdf


7: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

8: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

9: x½dim� – Complex Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR, the n by r solution matrix X.

10: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1;nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

11: iter – Integer * Output

On exit: if iter > 0, iterative refinement has been successfully used and iter is the number of
iterations carried out.

If iter < 0, iterative refinement has failed for one of the reasons given below and double precision
factorization has been carried out instead.

iter ¼ �1
Taking into account machine parameters, and the values of n and nrhs, it is not worth
working in single precision.

iter ¼ �2
Overflow of an entry occurred when moving from double to single precision.

iter ¼ �3
An intermediate single precision factorization failed.

iter ¼ �31
The maximum permitted number of iterations was exceeded.

f07 – Linear Equations (LAPACK) f07aqc

Mark 24 f07aqc.3



12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.
On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1; nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1; nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_SINGULAR

U valueh i; valueh ið Þ is exactly zero. The factorization has been completed, but the factor U is
exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies the equation of the form

Aþ Eð Þx̂ ¼ b;

where

f07aqc NAG Library Manual

f07aqc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf


Ek k1 ¼ O �ð Þ Ak k1

and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1

xk k1

� � Að Þ Ek k1

Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zcgesv (f07aqc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_zcgesv (f07aqc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The real analogue of this function is nag_dsgesv (f07acc).

10 Example

This example solves the equations

Ax ¼ b;

where A is the general matrix

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i

2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0
B@

1
CA and b ¼

26:26þ 51:78i
6:43� 8:68i
�5:75þ 25:31i

1:16þ 2:57i

0
B@

1
CA:

10.1 Program Text

/* nag_zcgesv (f07aqc) Example Program.
*
* Copyright 2009, Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer i, iter, j, n, nrhs, pda, pdb, pdx;

/* Arrays */
Integer *ipiv = 0;
Complex *a = 0, *b = 0, *x = 0;

f07 – Linear Equations (LAPACK) f07aqc

Mark 24 f07aqc.5

../F07/f07acc.pdf


/* Nag Types */
NagError fail;
Nag_OrderType order;

INIT_FAIL(fail);

printf("nag_zcgesv (f07aqc) Example Program Results\n\n");
/* Skip heading in data file*/
scanf("%*[^\n]");
scanf("%ld%ld%*[^\n]", &n, &nrhs);

if (n < 0 || nrhs < 0)
{

printf("Invalid n or nrhs\n");
exit_status = 1;
return exit_status;

}

pda = n;
#ifdef NAG_COLUMN_MAJOR

pdb = n;
pdx = n;
order = Nag_ColMajor;

#define A(I, J) a[(J-1)*pda + I-1]
#define B(I, J) b[(J-1)*pdb + I-1]
#else

pdb = nrhs;
pdx = nrhs;
order = Nag_RowMajor;

#define A(I, J) a[(I-1)*pda + J-1]
#define B(I, J) b[(I-1)*pdb + J-1]
#endif

if (!(a = NAG_ALLOC(n*n, Complex)) ||
!(b = NAG_ALLOC(n*nrhs, Complex)) ||
!(x = NAG_ALLOC(n*nrhs, Complex)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A and B from data file*/
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);

scanf("%*[^\n]");
for (i = 1; i <= n; i++)

for (j = 1; j <= nrhs; j++)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);

scanf("%*[^\n]");

/* Solve the equations Ax = b for x using
* nag_zcgesv (f07aqc)
* Mixed precision complex system solver
*/

nag_zcgesv(order, n, nrhs, a, pda, ipiv, b, pdb, x, pdx, &iter, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_zcgesv (f07aqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

f07aqc NAG Library Manual

f07aqc.6 Mark 24



{
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print pivot indices*/
printf("\n\nPivot indices\n");
for (i = 0; i < n; i++) printf("%11ld%s", ipiv[i], (i+1)%4?" ":"\n");
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ipiv);

return exit_status;
}
#undef B
#undef A

10.2 Program Data

nag_zcgesv (f07aqc) Example Program Data

4 1 : n, nrhs

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) : matrix A

(26.26,51.78) ( 6.43,-8.68) (-5.75,25.31) ( 1.16, 2.57) : vector b

10.3 Program Results

nag_zcgesv (f07aqc) Example Program Results

Solution(s)
1

1 ( 1.0000, 1.0000)
2 ( 2.0000,-3.0000)
3 (-4.0000,-5.0000)
4 ( 0.0000, 6.0000)

Pivot indices
3 2 3 4

f07 – Linear Equations (LAPACK) f07aqc

Mark 24 f07aqc.7 (last)


	f07aqc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Buttari et al. (2007)
	Golub and Van Loan (1996)

	5 Arguments
	order
	n
	nrhs
	a
	pda
	ipiv
	b
	pdb
	x
	pdx
	iter
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction



