NAG Library Function Document

nag linsys real gen norm rcomm (f04ydc)

1 Purpose

nag_linsys_real_gen_norm_rcomm (f04ydc) estimates the 1-norm of a real rectangular matrix without accessing the matrix explicitly. It uses reverse communication for evaluating matrix products. The function may be used for estimating condition numbers of square matrices.

2 Specification

3 Description

nag_linsys_real_gen_norm_rcomm (f04ydc) computes an estimate (a lower bound) for the 1-norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}| \tag{1}$$

of an m by n real matrix $A = (a_{ij})$. The function regards the matrix A as being defined by a user-supplied 'Black Box' which, given an $n \times t$ matrix X (with $t \ll n$) or an $m \times t$ matrix Y, can return AX or A^TY . A reverse communication interface is used; thus control is returned to the calling program whenever a matrix product is required.

Note: this function is **not recommended** for use when the elements of A are known explicitly; it is then more efficient to compute the 1-norm directly from formula (1) above.

The **main use** of the function is for estimating $||B^{-1}||_1$ for a square matrix, B, and hence the **condition number** $\kappa_1(B) = ||B||_1 ||B^{-1}||_1$, without forming B^{-1} explicitly $(A = B^{-1} \text{ above})$.

If, for example, an LU factorization of B is available, the matrix products $B^{-1}X$ and $B^{-T}Y$ required by nag_linsys_real_gen_norm_rcomm (f04ydc) may be computed by back- and forward-substitutions, without computing B^{-1} .

The function can also be used to estimate 1-norms of matrix products such as $A^{-1}B$ and ABC, without forming the products explicitly. Further applications are described by Higham (1988).

Since $||A||_{\infty} = ||A^{T}||_{1}$, nag_linsys_real_gen_norm_rcomm (f04ydc) can be used to estimate the ∞ -norm of A by working with A^{T} instead of A.

The algorithm used is described in Higham and Tisseur (2000).

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

Higham N J and Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21 1185–1201

5 Arguments

Note: this function uses **reverse communication**. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument **irevem**. Between intermediate exits and re-entries, all arguments other than x and y must remain unchanged.

1: **irevcm** – Integer *

Input/Output

On initial entry: must be set to 0.

On intermediate exit: **irevcm** = 1 or 2, and **x** contains the $n \times t$ matrix X and **y** contains the $m \times t$ matrix Y. The calling program must

(a) if irevcm = 1, evaluate AX and store the result in y or

if **irevcm** = 2, evaluate $A^{T}Y$ and store the result in **x**,

(b) call nag_linsys_real_gen_norm_rcomm (f04ydc) once again, with all the other arguments unchanged.

On intermediate re-entry: irevcm must be unchanged.

On final exit: **irevcm** = 0.

2: **m** – Integer

Input

On entry: the number of rows of the matrix A.

Constraint: $\mathbf{m} \geq 0$.

n - Integer

Input

On entry: n, the number of columns of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

4: $\mathbf{x}[dim]$ – double

Input/Output

Note: the dimension, dim, of the array x must be at least $\mathbf{pdx} \times \mathbf{t}$.

The (i, j)th element of the matrix X is stored in $\mathbf{x}[(j-1) \times \mathbf{pdx} + i - 1]$.

On initial entry: need not be set.

On intermediate exit: if irevcm = 1, contains the current matrix X.

On intermediate re-entry: if **irevcm** = 2, must contain $A^{T}Y$.

On final exit: the array is undefined.

5: **pdx** – Integer

Input

On entry: the stride separating matrix row elements in the array \mathbf{x} .

Constraint: pdx > n.

6: $\mathbf{y}[dim] - double$

Input/Output

Note: the dimension, dim, of the array y must be at least $\mathbf{pdy} \times \mathbf{t}$.

The (i, j)th element of the matrix Y is stored in $\mathbf{y}[(j-1) \times \mathbf{pdy} + i - 1]$.

On initial entry: need not be set.

On intermediate exit: if **irevcm** = 2, contains the current matrix Y.

On intermediate re-entry: if **irevcm** = 1, must contain AX.

On final exit: the array is undefined.

f04ydc.2 Mark 24

7: **pdy** – Integer

Input

On entry: the stride separating matrix row elements in the array y.

Constraint: $pdy \ge m$.

8: **estnrm** – double *

Input/Output

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

On final exit: an estimate (a lower bound) for $||A||_1$.

9: \mathbf{t} - Integer

Input

On entry: the number of columns t of the matrices X and Y. This is an argument that can be used to control the accuracy and reliability of the estimate and corresponds roughly to the number of columns of A that are visited during each iteration of the algorithm.

If $t \ge 2$ then a partly random starting matrix is used in the algorithm.

Suggested value: $\mathbf{t} = 2$.

Constraint: $1 \le t \le m$.

10: **seed** – Integer

Input

On entry: the seed used for random number generation.

If t = 1, seed is not used.

Constraint: if t > 1, seed ≥ 1 .

11: $\mathbf{work}[\mathbf{m} \times \mathbf{t}] - \mathbf{double}$

Communication Array

12: $iwork[2 \times n + 5 \times t + 20]$ – Integer

Communication Array

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

13: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE INT

```
On entry, irevcm = \langle value \rangle.
```

Constraint: **irevcm** = 0, 1 or 2.

On entry, $\mathbf{m} = \langle value \rangle$.

Constraint: $\mathbf{m} > 0$.

On entry, $\mathbf{n} = \langle value \rangle$.

Constraint: $\mathbf{n} \geq 0$.

On initial entry, **irevcm** = $\langle value \rangle$.

Constraint: irevcm = 0.

f04ydc NAG Library Manual

NE INT 2

```
On entry, \mathbf{m} = \langle value \rangle and \mathbf{t} = \langle value \rangle.
Constraint: 1 \leq \mathbf{t} \leq \mathbf{m}.
On entry, \mathbf{pdx} = \langle value \rangle and \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{pdx} \geq \mathbf{n}.
On entry, \mathbf{pdy} = \langle value \rangle and \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{pdy} \geq \mathbf{m}.
On entry, \mathbf{t} = \langle value \rangle and \mathbf{seed} = \langle value \rangle.
Constraint: if \mathbf{t} > 1, \mathbf{seed} \geq 1.
```

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

In extensive tests on **random** matrices of size up to m=n=450 the estimate **estnrm** has been found always to be within a factor two of $\|A\|_1$; often the estimate has many correct figures. However, matrices exist for which the estimate is smaller than $\|A\|_1$ by an arbitrary factor; such matrices are very unlikely to arise in practice. See Higham and Tisseur (2000) for further details.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

For most problems the time taken during calls to nag_linsys_real_gen_norm_rcomm (f04ydc) will be negligible compared with the time spent evaluating matrix products between calls to nag_linsys_real_gen_norm_rcomm (f04ydc).

The number of matrix products required depends on the matrix A. At most six products of the form Y = AX and five products of the form $X = A^TY$ will be required. The number of iterations is independent of the choice of t.

9.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix products. In particular, when estimating $\|B^{-1}\|_1$ using a triangular factorization of B, nag_linsys_real_gen_norm_rcomm (f04ydc) should not be called if one of the factors is exactly singular – otherwise division by zero may occur in the substitutions.

9.3 Choice of t

The argument t controls the accuracy and reliability of the estimate. For t=1, the algorithm behaves similarly to the LAPACK estimator xLACON. Increasing t typically improves the estimate, without increasing the number of iterations required.

For $t \ge 2$, random matrices are used in the algorithm, so for repeatable results the same value of **seed** should be used each time.

A value of t = 2 is recommended for new users.

f04ydc.4 Mark 24

9.4 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

```
do {
f04ydc(&irevcm,m,n,x,pdx,y,pdy,&estnrm,t,seed,work,iwork,&fail);
  if (irevcm == 1) {
    .. Code to compute y = A^(-1) x ..
}
  else if (irevcm == 2) {
    .. Code to compute x = A^(-T) y ..
}
} (while irevcm != 0)
```

To compute $A^{-1}X$ or $A^{-T}Y$, solve the equation AY = X or $A^{T}X = Y$, storing the result in \mathbf{y} or \mathbf{x} respectively. The code will vary, depending on the type of the matrix A, and the NAG function used to factorize A.

The factorization will normally have been performed by a suitable function from Chapters f01, f03 or f07. Note also that many of the 'Black Box' functions in Chapter f04 for solving systems of equations also return a factorization of the matrix. The example program in Section 10 illustrates how nag_linsys_real_gen_norm_rcomm (f04ydc) can be used in conjunction with NAG C Library functions for LU factorization of a real matrix nag dgetrf (f07adc).

It is straightforward to use nag_linsys_real_gen_norm_rcomm (f04ydc) for the following other types of matrix, using the named functions for factorization and solution:

```
nonsymmetric band (nag_dgbtrf (f07bdc) and nag_dgbtrs (f07bec));
```

symmetric positive definite (nag_dpotrf (f07fdc) and nag_dpotrs (f07fec));

symmetric positive definite band (nag_dpbtrf (f07hdc) and nag_dpbtrs (f07hec));

symmetric positive definite tridiagonal (nag_dptsv (f07jac), nag_dpttrf (f07jdc) and nag_dpttrs (f07jec));

symmetric positive definite variable bandwidth (nag_real_cholesky_skyline (f01mcc) and nag_real_cholesky_skyline_solve (f04mcc));

symmetric positive definite sparse (nag_sparse_sym_chol_fac (f11jac) and nag_sparse_sym_precon_ichol_solve (f11jbc));

symmetric indefinite (nag dsptrf (f07pdc) and nag dsptrs (f07pec));

nonsymmetric sparse (nag_superlu_lu_factorize (f11mec) and nag_superlu_solve_lu (f11mfc); note that nag superlu condition number lu (f11mgc) can also be used here).

For upper or lower triangular matrices, no factorization function is needed: $Y = A^{-1}X$ and $X = A^{-T}Y$ may be computed by calls to nag_dtrsv (f16pjc) (or nag_dtbsv (f16pkc) if the matrix is banded, or nag_dtpsv (f16plc) if the matrix is stored in packed form).

10 Example

This example estimates the condition number $||A||_1 ||A^{-1}||_1$ of the matrix A given by

$$A = \begin{pmatrix} 0.7 & -0.2 & 1.0 & 0.0 & 2.0 & 0.1 \\ 0.3 & 0.7 & 0.0 & 1.0 & 0.9 & 0.2 \\ 0.0 & 0.0 & 0.2 & 0.7 & 0.0 & -1.1 \\ 0.0 & 3.4 & -0.7 & 0.2 & 0.1 & 0.1 \\ 0.0 & -4.0 & 0.0 & 1.0 & 9.0 & 0.0 \\ 0.4 & 1.2 & 4.3 & 0.0 & 6.2 & 5.9 \end{pmatrix}$$

f04ydc NAG Library Manual

10.1 Program Text

```
/* nag_linsys_real_gen_norm_rcomm (f04ydc) Example Program.
* Copyright 2013, Numerical Algorithms Group.
 * Mark 23, 2013.
#include <naq.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagf07.h>
#include <nagf16.h>
int main(void)
  /* Scalars */
  Integer
                 exit_status = 0, irevcm = 0, seed = 354;
                 i, j, m, n, pda, pdx, pdy, t;
cond = 0.0, nrma = 0.0, nrminv = 0.0;
  Integer
  double
  /* Local Arrays */
                 *icomm = 0, *ipiv = 0;
                 *a = 0, *work = 0, *x = 0, *y = 0;
  double
  /* Nag Types */
  Nag_OrderType order;
  NagError
               fail;
  Nag_TransType trans;
  INIT_FAIL(fail);
#define A(I, J) a[(J-1)*pda + I-1]
  order = Nag_ColMajor;
  /* Output preamble */
  printf("nag_linsys_real_gen_norm_rcomm (f04ydc) ");
  printf("Example Program Results\n\n");
  fflush(stdout);
  /* Skip heading in data file */
  scanf("%*[^\n] ");
  /* Read in the problem size and the value of the parameter t */ scanf("%ld %ld %' [^\n] ", &m, &n, &t);
  pda = n;
  pdx = n;
  pdy = m;
  if (!(a = NAG_ALLOC(m*n, double)) ||
      !(x = NAG_ALLOC(n*t, double)) ||
!(y = NAG_ALLOC(m*t, double)) ||
      !(work = NAG_ALLOC(m*t, double))||
      !(ipiv = NAG_ALLOC(n, Integer)) ||
      !(icomm = NAG_ALLOC(2*n+5*t+20, Integer))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }
  /* Read in the matrix a from data file */
  for (i = 1; i \le m; i++)
   for (j = 1; j \le n; j++) scanf(" %lf ", &A(i, j));
  scanf("%*[^\n]");
  /* Compute the 1-norm of A */
```

f04ydc.6 Mark 24

```
nag_dge_norm(order, Nag_OneNorm, m, n, a, pda, &nrma, &fail);
if (fail.code != NE_NOERROR)
    printf("Error from nag_dge_norm\n%s\n",fail.message);
    exit_status = 1;
    goto END;
printf("Estimated norm of A is: %7.2f\n\n",nrma);
 * Estimate the norm of A^{(-1)} without explicitly forming A^{(-1)}
/* Compute an LU factorization of A using nag_dgetrf (f07adc) */
nag_dgetrf(order, m, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)
  {
   printf("Error from nag_dgetrf\n%s\n",fail.message);
   exit_status = 2;
   goto END;
  }
/* Estimate the norm of A^(-1) using the LU factors of A
 * nag_linsys_real_gen_norm_rcomm (f04ydc)
 * Estimate of the 1-norm of a real matrix
 */
do {
 nag_linsys_real_gen_norm_rcomm(&irevcm, m, n, x, pdx, y, pdy,
                                 &nrminv, t, seed, work, icomm, &fail);
  if (irevcm == 1)
    {
      /* Compute y = inv(A) *x by solving Ay = x */
      trans = Nag_NoTrans;
      nag_dgetrs(order, trans, n, t, a, pda, ipiv, x, pdx, &fail);
      if (fail.code != NE_NOERROR)
          printf("Error from nag_dgetrs\n%s\n",fail.message);
          exit_status = 3;
          goto END;
      for (i = 0; i < n*t; i++) y[i] = x[i];
  else if (irevcm == 2)
      /* Compute x = inv(A)^T y by solving A^T x = y */
      trans = Nag_Trans;
      nag_dgetrs(order, trans, n, t, a, pda, ipiv, y, pdy, &fail);
      if (fail.code != NE_NOERROR)
          printf("Error from nag_dgetrs\n%s\n",fail.message);
          exit_status = 4;
          goto END;
      for (i = 0; i < n*t; i++) x[i] = y[i];
  } while (irevcm != 0);
if (fail.code != NE_NOERROR)
   printf("Error from nag_linsys_real_gen_norm_rcomm (f04ydc)\n%s\n",
           fail.message);
    exit_status = 5;
    goto END;
printf("Estimated norm of inverse of A is: %7.2f\n\n",nrminv);
/* Compute and print the estimated condition number */
cond = nrma*nrminv;
```

f04ydc NAG Library Manual

```
printf("Estimated condition number of A is: %7.2f\n",cond);

END:
   NAG_FREE(a);
   NAG_FREE(x);
   NAG_FREE(y);
   NAG_FREE(work);
   NAG_FREE(icomm);
   NAG_FREE(icit);
   return exit_status;
}
```

10.2 Program Data

```
nag_linsys_real_gen_norm_rcomm (f04ydc) Example Program Data
```

```
:Values of m, n and t
                                 0.1
                   0.0
0.7
     -0.2
            1.0
                          2.0
0.3
      0.7
            0.0
                    1.0
                          0.9
                                0.2
0.0
      0.0
            0.2
                   0.7
                          0.0
                                -1.1
                                0.1
            -0.7
                   0.2
0.0
      3.4
                          0.1
0.0
     -4.0
            0.0
                   1.0
                          9.0
                                 0.0
0.4
      1.2
             4.3
                    0.0
                          6.2
                                 5.9
                                           :End of matrix a
```

10.3 Program Results

```
nag_linsys_real_gen_norm_rcomm (f04ydc) Example Program Results
Estimated norm of A is: 18.20
Estimated norm of inverse of A is: 2.97
Estimated condition number of A is: 54.14
```

f04ydc.8 (last) Mark 24