f01 — Matrix Factorizations f01hac

NAG Library Function Document

nag_matop_complex_gen_ matrix_actexp (f0lhac)

1 Purpose

nag_matop_complex gen matrix_actexp (fOlhac) computes the action of the matrix exponential e, on
the matrix B, where A is a complex n by n matrix, B is a complex n by m matrix and ¢ is a complex
scalar.

2 Specification

#include <nag.h>
#include <nagfOl.h>

void nag_matop_complex_gen_matrix_actexp (Integer n, Integer m, Complex all,
Integer pda, Complex b[], Integer pdb, Complex t, NagError *fail)

3 Description

e B is computed using the algorithm described in Al-Mohy and Higham (2011) which uses a truncated
Taylor series to compute the product e'4B without explicitly forming e/,

4 References

Al-Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

S Arguments
1: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

2: m — Integer Input
On entry: m, the number of columns of the matrix B.

Constraint: m > 0.

3: a[dim] — Complex Input/Output
Note: the dimension, dim, of the array a must be at least pda X n.
The (¢, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1].
On entry: the n by n matrix A.

On exit: A is overwritten during the computation.

4: pda — Integer Input
On entry: the stride separating matrix row elements in the array a.

Constraint: pda > n.

Mark 24 fOlhac.1

f01hac NAG Library Manual

5: b[dim] — Complex Input/Output
Note: the dimension, dim, of the array b must be at least pdb x m.
The (4, j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
On entry: the n by m matrix B.

On exit: the n by m matrix e B.

6: pdb — Integer Input
On entry: the stride separating matrix row elements in the array b.

Constraint: pdb > n.

7: t — Complex Input
On entry: the scalar t.

8: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Allocation of memory failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.
NE_INT 2

On entry, pda = (value) and n = (value).
Constraint: pda > n.

On entry, pdb = (value) and n = (value).
Constraint: pdb > n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NW_SOME_PRECISION_LOSS

¢ B has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.
7 Accuracy

For a Hermitian matrix A (for which A" = A) the computed matrix !4 B is guaranteed to be close to the
exact matrix, that is, the method is forward stable. No such guarantee can be given for non-Hermitian
matrices. See Section 4 of Al-Mohy and Higham (2011) for details and further discussion.

fOlhac.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

f01 — Matrix Factorizations f01hac

8 Parallelism and Performance

nag_matop_complex gen matrix_actexp (f0lhac) is not threaded by NAG in any implementation.

nag_matop_complex gen matrix_actexp (f01hac) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The matrix e4B could be computed by explicitly forming e using

nag _matop_complex gen matrix_exp (f0lfcc) and multiplying B by the result. However, experiments
show that it is usually both more accurate and quicker to use nag matop complex gen matrix_actexp
(f01hac).

The cost of the algorithm is O(n?m). The precise cost depends on A since a combination of balancing,
shifting and scaling is used prior to the Taylor series evaluation.

Approximately n?>+ (2m+8)n of complex allocatable memory is required by
nag_matop_complex gen matrix_actexp (fOlhac).

nag_matop_real gen matrix_actexp (f0lgac) can be used to compute e'‘B for real A, B, and t.
nag_matop complex gen matrix_actexp rcomm (fOlhbc) provides an implementation of the algorithm
with a reverse communication interface, which returns control to the user when matrix multiplications
are required. This should be used if A is large and sparse.

10 Example

This example computes ¢4 B, where

054+0.00 —-0240.0¢ 1.0+0.12 0.0+ 0.4¢
0.3 40.0¢ 05+12: 3.1+0.00 1.0+0.2
0.0 +2.0¢ 0.140.06 12+402¢ 05+4+0.0: |’
1.0 +0.3¢ 00+02: 0.0+0.9i 0.5+0.0¢

A:

0.4+0.0¢ 1.2 +0.0¢
1.340.00 —0.2+0.1¢
0.04+03: 2.1+0.0¢
0.4+4+0.00 —0.9+0.0¢

and

t=—-0.540.0:.

10.1 Program Text
/* nag_matop_complex_gen_matrix_actexp (f0lhac) Example Program.
*

* Copyright 2013 Numerical Algorithms Group.

* Mark 23, 2013.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagfOl.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)

Mark 24 fOlhac.3

../F01/f01fcc.pdf
../F01/f01gac.pdf
../F01/f01hbc.pdf

f01hac NAG Library Manual

{
/* Scalars */
Integer exit_status = 0;
Integer i, j, m, n, lda, 1ldb;
Complex t;
/* Arrays */
Complex *a = 0;
Complex *b = 0;

/* Nag Types */
Nag_OrderType order;
NagError fail;

INIT_FAIL(fail);

#define A(I, J) al(J-1)*1lda + I-1]
#define B(I, J) b[(J-1)*1db + I-1]

order = Nag_ColMajor;

/* Output preamble */

printf ("nag_matop_complex_gen_matrix_actexp (fOlhac) ");
printf ("Example Program Results\n\n");

fflush(stdout) ;

/* Skip heading in data file */
scanf ("*["\n]"

/* Read in the problem size and the value of the parameter t*/
scanf ("%$1d %14 (%1f , %1f) %*["\nl]", &n, &m, &t.re, &t.im);

lda = n;
1db n;

if (!(a = NAG_ALLOC(n*n, Complex)) ||
1 (b = NAG_ALLOC(n*m, Complex))) {
printf("Allocation failure\n")
exit_status = -1;
goto END;
¥

/* Read in the matrix a from data file */
for (i = 1; i <= n; i++)

for (3 = 1; j <= n; j++)
scanf (" (%1f , %1f) ", &A(i, j).re, &A(i, J).im);
scanf ("s*["\nl");

/* Read in the matrix b from data file */
for (i = 1; i <= n; i++)

for (j = 1; j <= m; j++)
scanf (" (olf , %1f) ", &B(i, j).re, &B(i, Jj).im);
scanf ("$*[*\nl");

/* Find exp(tA) B using
* nag_matop_complex_gen_matrix_actexp (f0lhac)
* Action of the exponential of a complex matrix on a complex matrix
*/
nag_matop_complex_gen_matrix_actexp(n, m, a, lda, b, 1db, t, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_matop_complex_gen_matrix_actexp (f0lhac)\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Print solution using
* nag_gen_complx_mat_print (x04dac)
* Print complex general matrix (easy-to-use)

fOlhac.4 Mark 24

f01 — Matrix Factorizations f01hac

*
/
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m,
b, 1db, "exp(tA) B", NULL, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_gen_complx _mat_print (x04cac)\n%s\n",
fail.message) ;
exit_status = 2;
goto END;
3

END:

NAG_FREE (a) ;
NAG_FREE (b) ;

return exit_status;

}

10.2 Program Data

nag_matop_complex_gen_matrix_actexp (f0lhac) Example Program Data

4 2 (-0.5,0.0) :Values of n, m and t
(0.5,0.0) (-0.2,0.0) (1.0,0.1) (0.0,0.4)

(0.3,0.0) (0.5,1.2) (3.1,0.0) (1.0,0.2)

(0.0,2.0) (0.1,0.0) (1.2,0.2) (0.5,0.0)

(1.0,0.3) (0.0,0.2) (0.0,0.9) (0.5,0.0) :End of matrix a
(0.4,0.0) (1.2,0.0)

(1.3,0.0) (-0.2,0.1)

(0.0,0.3) (2.1,0.0)

(0.4,0.0) (-0.9,0.0) :End of matrix b

10.3 Program Results

nag_matop_complex_gen_matrix_actexp (fOlhac) Example Program Results

exp(tA) B
1 2
1 0.4251 -0.0220
-0.1061 0.3289
2 0.7229 -1.7931
-0.5940 1.4952
3 -0.1394 1.4781
-0.1151 -0.4514
4 0.1054 -1.0059
-0.0786 -0.7079

Mark 24 fOlhac.5 (last)

	f01hac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Al-Mohy and Higham (2011)
	Higham (2008)

	5 Arguments
	n
	m
	a
	pda
	b
	pdb
	t
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NW_SOME_PRECISION_LOSS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

