f01 — Matrix Factorizations f01fmc

NAG Library Function Document

nag_matop_complex gen matrix_fun_usd (f01fmc)

1 Purpose

nag_matop_complex gen matrix fun usd (f0l1fmc) computes the matrix function, f(A), of a complex n
by n matrix A, using analytical derivatives of f you have supplied.

2 Specification

#include <nag.h>
#include <nagf01l.h>

void nag_matop_complex_gen_matrix_fun usd (Nag_OrderType order, Integer n,
Complex al[], Integer pda,

void (*f) (Integer m, Integer *iflag, Integer nz, const Complex z[],
Complex fz[], Nag_Comm *comm),

Nag_Comm *comm, Integer *iflag, NagError *fail)

3 Description

f(A) is computed using the Schur—Parlett algorithm described in Higham (2008) and Davies and
Higham (2003).

The scalar function f, and the derivatives of f, are returned by the function f which, given an integer m,
should evaluate f<”")(zl-) at a number of points z;,, for i=1,2,...,n,, on the complex plane.
nag_matop complex gen matrix_fun _usd (f0lfmc) is therefore appropriate for functions that can be
evaluated on the complex plane and whose derivatives, of arbitrary order, can also be evaluated on the
complex plane.

4 References

Davies P I and Higham N J (2003) A Schur—Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

3: a[dim] — Complex Input/Output

Note: the dimension, dim, of the array a must be at least pda x n.

Mark 24 fOlfme.1

../GENINT/essint.pdf
../GENINT/essint.pdf

f01fmc NAG Library Manual

The (7, j)th element of the matrix A is stored in

a[(j — 1) x pda + ¢ — 1] when order = Nag_ColMajor;
a[(i — 1) x pda + j — 1] when order = Nag_RowMajor.

On entry: the n by n matrix A.
On exit: the n by n matrix, f(A).

4: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda > n.

5: f — function, supplied by the user External Function

Given an integer m, the function f evaluates (™ (z;) at a number of points z;.

The specification of f is:

void f (Integer m, Integer *iflag, Integer nz, const Complex z[],
Complex fz[], Nag_Comm *comm)

1: m — Integer Input
On entry: the order, m, of the derivative required.

If m =0, f(z) should be returned. For m > 0, f(")(z;) should be returned.

2: iflag — Integer * Input/Output
On entry: iflag will be zero.

On exit: iflag should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f(z); for instance
f(z;) may not be defined for a particular z;. If iflag is returned as nonzero then
nag_matop_complex gen matrix_fun usd (f01fmc) will terminate the computation, with
fail.code = NE_USER STOP.

3: nz — Integer Input

On entry: n,, the number of function or derivative values required.

4: z[nz| — const Complex Input
On entry: the n, points zi, 22, ..., z,, at which the function f is to be evaluated.

5: fz[nz] — Complex Output
On exit: the n. function or derivative values. fz[i — 1] should return the value f(™(z;),
fori=1,2,...,n,..

6: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to f.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be wvoid *. Before calling
nag_matop_complex gen matrix_fun usd (f01fmc) you may allocate memory
and initialize these pointers with various quantities for use by f when called from

fOlfimc.2 Mark 24

f01 — Matrix Factorizations f01fmc

nag_matop_complex gen matrix_fun usd (f0lfmc) (see Section 3.2.1.1 in the
Essential Introduction).

6: comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

7: iflag — Integer * Output
On exit: iflag = 0, unless iflag has been set nonzero inside f, in which case iflag will be the value
set and fail will be set to fail.code = NE USER STOP.

8: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Allocation of memory failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_CONVERGENCE

A Taylor series failed to converge.

NE_INT
On entry, n = (value).
Constraint: n > 0.
NE_INT 2
On entry, pda = (value) and n = (value).
Constraint: pda > n.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected internal error occurred when ordering the eigenvalues of A. Please contact NAG.

The function was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the function has been called incorrectly.

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the function has been called incorrectly.

NE_USER_STOP

iflag has been set nonzero by the user.

7 Accuracy

For a normal matrix A (for which AHA = AAM), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f(A) using the Schur vectors. This
should give a very accurate result. In general, however, no error bounds are available for the algorithm.
See Section 9.4 of Higham (2008) for further discussion of the Schur—Parlett algorithm.

Mark 24 fOlfmc.3

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

f01fmc NAG Library Manual

8 Parallelism and Performance

nag matop_complex gen matrix_fun usd (fO0lfmc) is threaded by NAG for parallel execution in
multithreaded implementations of the NAG Library.

nag matop complex gen matrix fun usd (f01fmc) makes calls to BLAS and/or LAPACK routines,
which may be threaded within the vendor library used by this implementation. Consult the
documentation for the vendor library for further information.

In these implementations, this may make calls to the user supplied functions from within an OpenMP
parallel region. Thus OpenMP directives within the user functions should be avoided, unless you are
using the same OpenMP runtime library (which normally means using the same compiler) as that used to
build your NAG Library implementation, as listed in the Installers” Note. You must also ensure that you
use the NAG communication argument comm in a thread safe manner, which is best achieved by only
using it to supply read-only data to the user functions.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

Up to 6n? of Complex allocatable memory is required.

The cost of the Schur—Parlett algorithm depends on the spectrum of A, but is roughly between 28n° and
n*/3 floating-point operations. There is an additional cost in evaluating f and its derivatives. If the
derivatives of f are not known analytically, then nag matop complex gen matrix_fun_num (f01flc) can
be used to evaluate f(A) using numerical differentiation. If A is complex Hermitian then it is
recommended that nag_matop _complex herm_matrix_fun (f01ffc) be used as it is more efficient and, in
general, more accurate than nag_matop complex gen matrix fun_usd (f01fmc).

Note that f must be analytic in the region of the complex plane containing the spectrum of A.
For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then
nag_matop_complex gen matrix_cond usd (f0lkcc) should be used.

nag_matop_real gen matrix_fun usd (f0lemc) can be used to find the matrix function f(A) for a real
matrix A.

10 Example
This example finds the 34 where

1.0+0.0¢ 0.040.0¢ 1.0+0.0¢ 0.0+ 2.0¢

A= 00+4+1.0¢ 10400 —1.040.0¢ 1.0+ 0.0¢
—-1.040.0¢ 00410 0041.0¢ 0.0+ 1.0¢
1.0+1.0¢ 00420 —1.040.0¢ 0.0+ 1.0¢

10.1 Program Text

/* nag_matop_complex_gen _matrix_fun_usd (f0lfmc) Example Program.
* Copyright 2011, Numerical Algorithms Group.
*

* Mark 23, 2011.

*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf0l.h>
#include <nagx04.h>
#include <math.h>

#ifdef __ cplusplus
extern "C" {

fOlfimc.4 Mark 24

../F01/f01flc.pdf
../F01/f01ffc.pdf
../F01/f01kcc.pdf
../F01/f01emc.pdf

f01 — Matrix Factorizations

#endif
static void NAG_CALL f(Integer m, Integer *iflag, Integer nz,
const Complex z[], Complex fz[], Nag_Comm *comm) ;
#ifdef __ cplusplus

}

#endif

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, iflag, j, n, pda;

/* Arrays */
static double ruser[1l] = {-1.0};

Complex *a = 0;

/* Nag Types */

Nag_Comm comm;
Nag_OrderType order;
NagError fail;

INIT FAIL(fail);

#ifdef NAG_COLUMN_MAJOR

#define A(I, J) al(J-1)*pda + I-1]
order = Nag_ColMajor;

#else

#define A(I, J) al(I-1)*pda + J-1]
order = Nag_RowMajor;

#endif

printf("nag_matop_complex_gen_matrix_fun_usd (£0lfmc) ");
printf ("Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

fflush(stdout) ;

/* Skip heading in data file */
scanf ("s*["\nl") ;

/* Read in the problem size */
scanf ("%1d%s*["\n]", &n);

pda = n;

if (!(a = NAG_ALLOC((pda)*(n), Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read in the matrix a from data file */
for (1 = 1; 1 <= n; i++)
for (j = 1; j <= n; j++)
scanf (" (%1f , %1f) ", &A(i, J).re, &A(i, J).im);
scanf ("s*["\nl") ;

/* Find matrix function using
* nag_matop_complex_gen_matrix_fun_usd (£f01fmc)
* Function of a complex matrix

*/
nag_matop_complex_gen_matrix_fun_usd(order, n, a, pda, f, &comm, &iflag,
&fail);
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_matop_complex_gen_matrix_fun_usd (£0lfmc)\n%s

Mark 24

f01fmc

\n",

fOlfme.5

f01fmc NAG Library Manual

fail.message) ;
exit_status = 1;
goto END;
3

/* Print solution using
* nag_gen_complx _mat_print (xO4dac).
* Print complex general matrix (easy-to-use)
*
/
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a,
pda, "f(aA)", NULL, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_complx_mat_print (x04dac)\n%s\n",
fail.message) ;
exit_status = 2;
goto END;
3

END:
NAG_FREE (a) ;
return exit_status;

}

static void NAG_CALL f(Integer m, Integer *iflag, Integer nz,
const Complex z[], Complex fz[], Nag_Comm *comm)

{
/* Scalars */
Integer 7Jj;
if (comm->user[0] == -1.0)
{
printf (" (User-supplied callback f, first invocation.)\n");
comm->user [0] = 0.0;
}
for (j = 0; j < nz; j++) {
/* The m"th derivative of exp(3z) for complex z */
fz[j]l.re = pow(3.0,m)*exp(3.0*z[j].re)*cos(3.0*z[j].1im);
fz[j]l.im = pow(3.0,m)*exp(3.0*z[j].re)*sin(3.0*z[j].im);
¥
/* Set iflag nonzero to terminate execution for any reason. */
*iflag = 0;
}

10.2 Program Data

nag_matop_complex_gen_matrix_fun usd (f0lfmc) Example Program Data
:Value of n

R OR D
ocooo
[
NP OO
cooo
or oo
ocor o
cooo
B OoN

)
)
)
)

[cNoNoNe]

oooo
RO R P
oocoo
<~ < -

[oNeoN N}

(
(
(
(

|
R ORr O
[oNoNoNe]

:End of matrix a

10.3 Program Results

nag_matop_complex_gen_matrix_fun_usd (f01fmc) Example Program Results

(User-supplied callback f, first invocation.)

f(a)
1 2 3 4
1 -10.3264 -1.4883 -12.1206 41.5622
14.8082 74.3369 -47.0956 32.2927
2 63.3909 -21.0117 16.5106 -5.1725
-40.5336 -62.7073 35.2787 17.9413
3 -6.3954 25.4246 -14.4937 -20.3167
56.4708 13.8034 -9.2397 2.8647
4 31.4957 28.6003 -23.8034 23.9841

fO0lfimc.6 Mark 24

f01 — Matrix Factorizations f01fmc

23.2757 21.4573 -11.6547 18.7737

Mark 24 fOlfme.7 (last)

	f01fmc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Davies and Higham (2003)
	Higham (2008)

	5 Arguments
	order
	n
	a
	pda
	f
	m
	iflag
	nz
	z
	fz
	comm
	user
	iuser
	p

	comm
	iflag
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

