f01 — Matrix Factorizations f0leke

NAG Library Function Document

nag_matop_real gen matrix_fun_std (f0lekc)

1 Purpose

nag matop_real gen matrix fun std (f0lekc) computes the matrix exponential, sine, cosine, sinh or
cosh, of a real n by n matrix A using the Schur—Parlett algorithm.

2 Specification

#include <nag.h>
#include <nagf01l.h>

void nag_matop_real_gen_matrix_fun_std (Nag_OrderType order,
Nag_MatFunType fun, Integer n, double a[], Integer pda, double *imnorm,
NagError *fail)

3 Description

f(A), where f is either the exponential, sine, cosine, sinh or cosh, is computed using the Schur—Parlett
algorithm described in Higham (2008) and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur—Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464-485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: fun — Nag MatFunType Input
On entry: indicates which matrix function will be computed.

fun = Nag_Exp
The matrix exponential, e, will be computed.

fun = Nag_Sin
The matrix sine, sin(A), will be computed.

fun = Nag_Cos
The matrix cosine, cos(A), will be computed.

fun = Nag_Sinh
The hyperbolic matrix sine, sinh(A), will be computed.

fun = Nag_Cosh
The hyperbolic matrix cosine, cosh(A), will be computed.

Constraint: fun = Nag_Exp, Nag_Sin, Nag_Cos, Nag_Sinh or Nag_Cosh.

Mark 24 fOleke.1

../GENINT/essint.pdf
../GENINT/essint.pdf

f0leke NAG Library Manual

6

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least pda x n.
The (7, j)th element of the matrix A is stored in

a[(j — 1) x pda + ¢ — 1] when order = Nag_ColMajor;
a[(i — 1) x pda + j — 1] when order = Nag_RowMajor.

On entry: the n by n matrix A.
On exit: the n by n matrix, f(A).

pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda > n.

imnorm — double * Output

On exit: if A has complex eigenvalues, nag_matop real gen matrix fun std (fO0lekc) will use
complex arithmetic to compute the matrix function. The imaginary part is discarded at the end of
the computation, because it will theoretically vanish. immorm contains the 1-norm of the
imaginary part, which should be used to check that the routine has given a reliable answer.

If A has real eigenvalues, nag_matop_real gen matrix_fun_std (fOlekc) uses real arithmetic and
imnorm = 0.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Allocation of memory failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_CONVERGENCE

A Taylor series failed to converge.

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_INT 2

On entry, pda = (value) and n = (value).
Constraint: pda > n.

fOleke.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

f01 — Matrix Factorizations f0leke

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected internal error occurred when evaluating the function at a point. Please contact
NAG.

An unexpected internal error occurred when ordering the eigenvalues of A. Please contact NAG.

The function was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the function has been called incorrectly.

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the function has been called incorrectly.

NE_SINGULAR

The linear equations to be solved are nearly singular and the Padé approximant used to compute
the exponential may have no correct figures.
Note: this failure should not occur and suggests that the function has been called incorrectly.

7 Accuracy

For a normal matrix A (for which ATA = AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f(A) using the Schur vectors. This
should give a very accurate result. In general, however, no error bounds are available for the algorithm.

For further discussion of the Schur—Parlett algorithm see Section 9.4 of Higham (2008).

8 Parallelism and Performance

nag matop real gen matrix fun std (fOlekc) is threaded by NAG for parallel execution in multi-
threaded implementations of the NAG Library.

nag_matop_real gen matrix_fun_std (fO0lekc) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

In these implementations, this may make calls to the user supplied functions from within an OpenMP
parallel region. Thus OpenMP directives within the user functions should be avoided, unless you are
using the same OpenMP runtime library (which normally means using the same compiler) as that used to
build your NAG Library implementation, as listed in the Installers’ Note.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The Integer allocatable memory required is n. If A has real eigenvalues then up to 9n? of double
allocatable memory may be required. If A has complex eigenvalues then up to 9n> of Complex
allocatable memory may be required.

The cost of the Schur—Parlett algorithm depends on the spectrum of A, but is roughly between 28n* and
n*/3 floating-point operations; see Algorithm 9.6 of Higham (2008).

If the matrix exponential is required then it is recommended that nag real gen matrix_exp (f0lecc) be
used. nag real gen matrix_exp (f0lecc) uses an algorithm which is, in general, more accurate than the
Schur—Parlett algorithm used by nag matop real gen matrix fun_std (fO0lekc).

If estimates of the condition number of the matrix function are required then
nag matop_real gen matrix_cond std (f0ljac) should be used.

nag matop_complex gen matrix_fun std (f01fkc) can be used to find the matrix exponential, sin, cos,
sinh or cosh of a complex matrix.

Mark 24 fOleke.3

../F01/f01ecc.pdf
../F01/f01ecc.pdf
../F01/f01jac.pdf
../F01/f01fkc.pdf

f0leke NAG Library Manual

10 Example
This example finds the matrix cosine of the matrix
2 0 1 0
bz
1 4 00

10.1 Program Text

/* nag_matop_real_gen_matrix_fun_std (f0lekc) Example Program.
*

* Copyright 2011, Numerical Algorithms Group.

* Mark 23, 2011.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf0l.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda;
double imnorm;

/* Arrays */
double *a = 0;
char nag_enum_arg[100];

/* Nag Types */
Nag_OrderType order;
Nag_MatFunType fun;
NagError fail;

INIT_FAIL(fail);

#ifdef NAG_COLUMN_MAJOR

#define A(I, J) al(J-1)*pda + I-1]
order = Nag_ColMajor;

#else

#define A(I, J) al(I-1)*pda + J-1]
order = Nag_RowMajor;

#endif

/* Output preamble */

printf ("nag_matop_real_gen_matrix_fun_std (f0lekc) ");
printf ("Example Program Results\n\n");

fflush(stdout) ;

/* Skip heading in data file */
scanf ("&*[*\n]");

/* Read in the problem size and the required function */
scanf ("%$1d%99s%*[*\n]", &n, nag_enum_argqg);

pda = n;

if (!(a = NAG_ALLOC((pda)*(n), double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

fOlekc.4 Mark 24

f01 — Matrix Factorizations f0leke

/*
* nag_enum_name_to_value (x04nac)
* Converts Nag enum member name to value
*/

fun = (Nag_MatFunType) nag_enum_name_to_value(nag_enum_arg) ;

/* Read in the matrix a from data file */
for (i = 1; 1 <= n; i++)

for (3 = 1; j <= n; j++) scanf("%1f", &A(i,3));
scanf ("$*[*\nl");

/* Find the matrix function using
* nag_matop_real_gen_matrix_fun_std (f0lekc)
* Real matrix function
*/
nag_matop_real_gen_matrix_fun_std (order, fun, n, a, pda, &imnorm, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_matop_real gen_matrix_fun_std (f0lekc)\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
if (fabs(imnorm) > pow(nag_machine_precision,0.8)) {
printf ("\nWARNING: the error estimate returned in imnorm is larger than"
" expected;\n");
printf (" the matrix solution printed below is suspect:\n");
printf (" imnorm = %13.4e.\n\n", imnorm);

/* Print solution using
* nag_gen_real_mat_print (xO4cac)
* Print real general matrix (easy-to-use)
*/
nag_gen_real _mat_print (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, a, n, "f(A)", NULL, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_gen_real mat_print (x04cac)\n%s\n", fail.message) ;
exit_status = 2;
goto END;
}
END:

NAG_FREE (a) ;
return exit_status;

10.2 Program Data

nag_matop_real_ gen_matrix_fun_std (fO0lekc) Example Program Data
4 Nag_Cos :Values of n and fun

2.0 0.0 1.0 0.0

0.0 2.0 -2.0 1.0

0.0 2.0 3.0 1.0

1.0 4.0 0.0 0.0 :End of matrix a

Mark 24 fOleke.5

f0leke NAG Library Manual

10.3 Program Results

nag_matop_real_gen_matrix_fun_std (fO0lekc) Example Program Results

£(n)

1 2 3 4
1 -0.2998 1.5003 -0.7849 0.4677
2 -0.2385 -3.2657 0.5812 -1.1460
3 0.4677 0.3008 -4.0853 -0.2200
4 -0.2107 -2.8199 -1.2964 -0.8325

fOlekc.6 (last) Mark 24

	f01ekc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Davies and Higham (2003)
	Higham (2008)

	5 Arguments
	order
	fun
	n
	a
	pda
	imnorm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

