e02 — Curve and Surface Fitting e02dfc

NAG Library Function Document
nag_2d_spline_eval rect (e02dfc)

1 Purpose

nag 2d spline eval rect (e02dfc) calculates values of a bicubic spline from its B-spline representation.
The spline is evaluated at all points on a rectangular grid.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_eval_rect (Integer mx, Integer my, const double x[],
const double y[], double ff[], Nag_2dSpline *spline, NagError *fail)

3 Description

nag 2d spline eval rect (e02dfc) calculates values of the bicubic spline s(x,y) on a rectangular grid of
points in the z-y plane, from its augmented knot sets {\} and {x} and from the coefficients c;;, for
1=1,2,...,spline—~nx —4 and j = 1,2,...,spline—ny — 4, in its B-spline representation

s(w,y) = Zcszi(ﬁﬁ)Nj(y)-
i,J
Here M;(z) and N;(y) denote normalized cubic B-splines, the former defined on the knots \; to \;;4 and

the latter on the knots 1, to ft;14.

The points in the grid are defined by coordinates z,, for ¢ =1,2,...,m,, along the x axis, and
coordinates y,, for r =1,2,...,m, along the y axis.

This function may be used to calculate values of a bicubic spline given in the form produced by
nag 2d spline interpolant (eOldac), nag 2d spline fit grid (e02dcc) and nag 2d spline fit scat
(e02ddc). It is derived from the routine B2VRE in Anthony et al. (1982).

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL — Data Approximation Subroutine Library National
Physical Laboratory

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135-143

S Arguments

: mx — Integer Input
2: my — Integer Input

On entry: mx and my must specify m, and m,, respectively, the number of points along the = and
y axes that define the rectangular grid.

Constraint: mx > 1 and my > 1.

Mark 24 e02dfc.1

../E01/e01dac.pdf
../E02/e02dcc.pdf
../E02/e02ddc.pdf
../E02/e02ddc.pdf

e02dfc NAG Library Manual

3: x[mx]| — const double Input
y[my| — const double Input
On entry: X and y must contain x,, for ¢ =1,2,...,m,, and y,, for r =1,2,...,m,, respectively.

These are the x and y coordinates that define the rectangular grid of points at which values of the
spline are required.

Constraint: x and y must satisfy

spline—lamda[3] < x[¢ — 1] < x[¢| < spline—lamda[spline—nx — 4], for ¢ =1,2,...,m, — 1,
and spline—mu[3] < y[r — 1] < y[r] < spline—mu[spline—ny — 4], for r =1,2,...,m, — 1.
The spline representation is not valid outside these intervals.

5: ffimx x my] — double Output
On exit: ff[my x (¢ — 1)+ r — 1] contains the value of the spline at the point (z,,y,), for
¢g=12,...,myand r=1,2,...,m,.

6: spline — Nag 2dSpline *

Pointer to structure of type Nag 2dSpline with the following members:

nx — Integer Input

On entry: nx must specify the total number of knots associated with the variable z. It is
such that nx — 8 is the number of interior knots.

Constraint: nx > 8.
lamda — double * Input

On entry: a pointer to which memory of size nx must be allocated. lamda must contain the
complete sets of knots {\} associated with the z variable.

Constraint: the knots must be in nondecreasing order, with lamda[nx — 4] > lamda[3].
ny — Integer Input

On entry: ny must specify the total number of knots associated with the variable y.
It is such that ny — 8 is the number of interior knots.

Constraint: ny > 8.
mu — double * Input

On entry: a pointer to which memory of size ny must be allocated. mu must contain the
complete sets of knots {u} associated with the y variable.

Constraint: the knots must be in nondecreasing order, with mu[ny — 4] > mu|[3].
¢ — double * Input

On entry: a pointer to which memory of size (nx —4) x (ny —4) must be allocated.
c[(ny —4) x (i — 1)+ j — 1] must contain the coefficient ¢;; described in Section 3, for
1=1,2,...,nx—4and j=1,2,...,ny — 4.

In normal usage, the call to nag 2d spline eval rect (e02dfc) follows a call to
nag 2d spline interpolant (e0ldac), nag 2d spline fit grid (e02dcc) or nag 2d spline fit scat
(e02ddc), in which case, members of the structure spline will have been set up correctly for input
to nag_2d spline eval rect (e02dfc).

7: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

e02dfc.2 Mark 24

../E01/e01dac.pdf
../E02/e02dcc.pdf
../E02/e02ddc.pdf
../E02/e02ddc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

e02 — Curve and Surface Fitting e02dfc

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_END_KNOTS_CONS

On entry, the end knots must satisfy (value): (value) = (value), (value) = (value).

NE_INT_ARG_LT

On entry, mx = (value).
Constraint: mx > 1.

On entry, my = (value).
Constraint: my > 1.

On entry, spline—nx must not be less than 8: spline—nx = (value).

On entry, spline—ny must not be less than 8: spline—ny = (value).

NE_KNOTS_COORD_CONS

On entry, the end knots and coordinates must satisfy spline—lamda[3] < x[0] and
x[mx — 1] < spline—lamda[spline—nx — 4]. spline—lamda[3] = (value), x[0] = (value),
x[(value)] = (value), spline—lamda|(value)] = (value).

On entry, the end knots and coordinates must satisfy spline—mu(3] < y[0] and
y[my — 1] < spline—mu([spline—ny — 4]. spline—mu|[3] = (value), y[0] = (value),
y[(value)] = (value), spline—mu|({value)] = (value).

NE_NOT_INCREASING

The sequence spline—lamda is not increasing: spline—lamdal(value)] = (value),
spline—lamda|(value)] = (value).

The sequence spline—mu is not increasing: spline—mu((value)] = (value),
spline—mu((value)] = (value).

NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x[(value)] = (value), x[(value)] = (value).
The sequence y is not strictly increasing: y[(value)] = (value), y[(value)] = (value).

7 Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value
of s(z,,y,) can be regarded as the value that would have been obtained in exact arithmetic from slightly
perturbed B-spline coefficients. See Cox (1978) for details.

8 Parallelism and Performance

Not applicable.

9 Further Comments

Computation time is approximately proportional to m,m, + 4(mz + my).

Mark 24 e02dfc.3

e02dfc NAG Library Manual

10 Example

This program reads in knot sets
spline—lamda|0], ..., spline—lamda[spline—nx — 1] and spline—mul0], ...,

spline—mu(spline—ny — 1], and a set of bicubic spline coefficients ¢;;. Following these are values for
m, and the x coordinates x,, for ¢ =1,2,...,m,, and values for m, and the y coordinates y,, for
r=1,2,...,m,, defining the grid of points on which the spline is to be evaluated.

10.1 Program Text

/* nag_2d_spline_eval_rect (e02dfc) Example Program.
Copyright 1991 Numerical Algorithms Group.

Mark 2, 1991.
Mark 8 revised, 2004.

* X ¥k F

*/

#include <nag.h>

#include <stdio.h>

#include <nag_stdlib.h>
#include <nage02.h>

#define FF(I, J) fflmy*(I)+(J)]

int main(void)

{
Integer exit_status = 0, i, j, mx, my;
NagError fail;
Nag_2dSpline spline;
double *ff = 0, *x = 0, *y = 0;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.mu = O;

spline.c = 0;

printf("nag_2d_spline_eval rect (e02dfc) Example Program Results\n");
/* Skip heading in data file */
scanf ("s*[*\nl");
/* Read mx and my, the number of grid points in the x and y
* directions respectively.
*
/
scanf ("%$1d%1d", &mx, &my) ;
if (mx >= 1 && my >= 1)

{
if (!(x = NAG_ALLOC(mx, double)) ||
! (y = NAG_ALLOC (my, double)) ||
I (£ff = NAG_ALLOC (mx*my, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
¥
}
else
{

printf("Invalid mx or my.\n");
exit_status = 1;
return exit_status;

/* Read spline.nx and spline.ny, the number of knots
* in the x and y directions.
*/
scanf ("%$1d%1d", &(spline.nx), &(spline.ny));
if (!(spline.c = NAG_ALLOC((spline.nx-4)*(spline.ny-4), double)) ||
! (spline.lamda = NAG_ALLOC(spline.nx, double)) ||

e02dfc.4 Mark 24

e02 — Curve and Surface Fitting e02dfc

! (spline.mu = NAG_ALLOC(spline.ny, double)))

printf("Storage allocation failed.\n")
exit_status = -1;
goto END;
}
/* Read the knots spline.lamda[0]...spline.lamdal[nx-1]
* and spline.mu[O]...spline.mul[ny-1].

*/
for (i = O, 1 < spline.nx; i++)
scanf ("%1 &(spline.lamdalil));
for (i = O, i < spline.ny; 1i++)
scanf ("%1f", &(spline.mufli]));
/* Read s llne c, the bicubic spline coefficients. */

1%
for (i = 0; i < (spline.nx-4)*(spline.ny-4); i++)
scanf ("$1f", &(spline.c[i]));
/* Read the x and y co-ordinates defining the evaluation grid. */
for (i = 0; i < mx; i++)
scanf ("s1f", &x[i]);
for (i = 0; i < my; i++)
scanf ("$1f", &yl[il);
/* Evaluate the spline at the mx by my points. */
/* nag_2d_spline_eval_rect (e02dfc).
* Evaluation of bicubic spline, at a mesh of points
*
/
nag_2d_spline_eval_rect(mx, my, x, y, ff, &spline, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_2d_spline_eval_rect (e02dfc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Print the result array. */
printf("Spline evaluated on x-y grid (x across, y down):\n ") ;
for (i = 0; 1 < mx; 1i++)
printf("%2.1f ", x[i]);
printf ("\n");
for (jJ = 0; j < my; Jj++)

{
printf("s2.1f", y[3jl);
for (i = 0; 1 < mx; i++)
printf("%8.3f%s", FF(i, j), (i%7 == [l 1 == mx-1)?2"\n":" ");
}
END:

NAG_FREE (spline.c);
NAG_FREE (spline.lamda) ;
NAG_FREE (spline.mu) ;
NAG_FREE (x) ;

NAG_FREE (y) ;

NAG_FREE (ff) ;

return exit_status;

10.2 Program Data

nag_2d_spline_eval_rect (e02dfc) Example Program Data

7 6

11 10

1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0
6.0 0.0 0.0 0.0 0.4 0.7 1.0 1.0 1.0 1.0
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000
1.0 1.1 1.3 1.4 1.5 1.7 2.0

Mark 24 e02dfc.5

e02dfc

0.0 0.2 0.4

0.

6 0.8

10.3 Program Results

nag_2d_spline_eval_rect
Spline evaluated

.0

.000
.200
.400
.600
.800
.000

Y eNoNoNoRe!
O o N O
e e

NN R R R PR

on x-y

.1

.210
.410
.610
.810
.010
.210

(e02dfc)

.0

grid

NNMNNNNNR R

.3

.690
.890
.090
.290
.490
.690

1.
1.
.160
.360
.560
.760
.960

DN N NN

4
960

[\

wwNh NN

5

wWwwwwhN

Example Program Results
(x across, y down):

1.
.250
.450
.650
.850
.050
.250

.7

.890
.090
.290
.490
.690
.890

51 I N NN NG NN

NAG Library Manual

.000
.200
.400
.600
.800
.000

e02dfc.6 (last)

Mark 24

	e02dfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anthony et al. (1982)
	Cox (1978)

	5 Arguments
	mx
	my
	x
	y
	ff
	spline
	nx
	lamda
	ny
	mu
	c

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_END_KNOTS_CONS
	NE_INT_ARG_LT
	NE_KNOTS_COORD_CONS
	NE_NOT_INCREASING
	NE_NOT_STRICTLY_INCREASING

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

