
NAG Library Function Document

nag_2d_spline_fit_scat (e02ddc)

1 Purpose

nag_2d_spline_fit_scat (e02ddc) computes a bicubic spline approximation to a set of scattered data. The
knots of the spline are located automatically, but a single argument must be specified to control the
trade-off between closeness of fit and smoothness of fit.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_fit_scat (Nag_Start start, Integer m, const double x[],
const double y[], const double f[], const double weights[], double s,
Integer nxest, Integer nyest, double *fp, Integer *rank,
double *warmstartinf, Nag_2dSpline *spline, NagError *fail)

3 Description

nag_2d_spline_fit_scat (e02ddc) determines a smooth bicubic spline approximation s x; yð Þ to the set of
data points xr; yr; frð Þ with weights wr , for r ¼ 1; 2; . . . ;m.

The approximation domain is considered to be the rectangle xmin ; xmax½ � � ymin ; ymax½ �, where xmin yminð Þ
and xmax ymaxð Þ denote the lowest and highest data values of x yð Þ.
The spline is given in the B-spline representation

s x; yð Þ ¼
Xnx�4

i¼1

Xny�4

j¼1

cijMi xð ÞNj yð Þ; ð1Þ

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4

and the latter on the knots �j to �jþ4. For further details, see Hayes and Halliday (1974) for bicubic
splines and de Boor (1972) for normalized B-splines.

The total numbers nx and ny of these knots and their values �1; . . . ; �nx and �1; . . . ; �ny are chosen
automatically by the function. The knots �5; . . . ; �nx�4 and �5; . . . ; �ny�4 are the interior knots; they

divide the approximation domain xmin ; xmax½ � � ymin ; ymax½ � into nx � 7ð Þ � ny � 7
� �

subpanels
�i; �iþ1½ � � �i; �iþ1½ �, for i ¼ 4; 5; . . . ; nx � 4 and j ¼ 4; 5; . . . ; ny � 4. Then, much as in the curve case

(see nag_1d_spline_fit (e02bec));, the coefficients cij are determined as the solution of the following
constrained minimization problem:

minimize

�; ð2Þ

subject to the constraint

� ¼
Xm

r¼1

�2
r � S; ð3Þ

where � is a measure of the (lack of) smoothness of s x; yð Þ. Its value depends on the discontinuity jumps
in s x; yð Þ across the boundaries of the subpanels. It is zero only when there are no discontinuities and is
positive otherwise, increasing with the size of the jumps (see Dierckx (1981b) for details). �r denotes the
weighted residual wr fr � s xr; yrð Þð Þ, and S is a non-negative number to be specified.

By means of the argument S, ‘the smoothing factor’, you will then control the balance between
smoothness and closeness of fit, as measured by the sum of squares of residuals in 3. If S is too large,

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.1

../E02/e02bec.pdf

the spline will be too smooth and signal will be lost (underfit); if S is too small, the spline will pick up
too much noise (overfit). In the extreme cases the method would return an interpolating spline � ¼ 0ð Þ if
S were set to zero, and the least squares bicubic polynomial � ¼ 0ð Þ if S is set very large. Experimenting
with S values between these two extremes should result in a good compromise. (See Section 9.3 for
advice on choice of S.) Note however, that this function, unlike nag_1d_spline_fit (e02bec) and
nag_2d_spline_fit_grid (e02dcc), does not allow S to be set exactly to zero.

The method employed is outlined in Section 9.5 and fully described in Dierckx (1981a) and Dierckx
(1981b). It involves an adaptive strategy for locating the knots of the bicubic spline (depending on the
function underlying the data and on the value of S), and an iterative method for solving the constrained
minimization problem once the knots have been determined.

Values and derivatives of the computed spline can subsequently be computed by calling
nag_2d_spline_eval (e02dec), nag_2d_spline_eval_rect (e02dfc) and nag_2d_spline_deriv_rect
(e02dhc) as described in Section 9.6.

4 References

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Dierckx P (1981a) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven

Dierckx P (1981b) An algorithm for surface fitting with spline functions IMA J. Numer. Anal. 1 267–283

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

Peters G and Wilkinson J H (1970) The least squares problem and pseudo-inverses Comput. J. 13 309–
316

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: start – Nag_Start Input

On entry: start must be set to start ¼ Nag Cold or Nag Warm.

start ¼ Nag Cold (cold start)
The function will build up the knot set starting with no interior knots. No values need be
assigned to spline!nx and spline!ny and memory will be internally allocated to
spline!lamda, spline!mu and spline!c.

start ¼ Nag Warm (warm start)
The function will restart the knot-placing strategy using the knots found in a previous call
of the function. In this case, all arguments except s must be unchanged from that previous
call. This warm start can save much time in searching for a satisfactory value of S.

Constraint: start ¼ Nag Cold or Nag Warm.

2: m – Integer Input

On entry: m, the number of data points.

The number of data points with nonzero weight (see weights) must be at least 16.

3: x½m� – const double Input
4: y½m� – const double Input
5: f½m� – const double Input

On entry: x½r � 1�, y½r � 1�, f ½r � 1� must be set to the coordinates of xr ; yr ; frð Þ, the r th data
point , for r ¼ 1; 2; . . . ;m. The order of the data points is immaterial.

e02ddc NAG Library Manual

e02ddc.2 Mark 24

../E02/e02bec.pdf
../E02/e02dcc.pdf
../E02/e02dec.pdf
../E02/e02dfc.pdf
../E02/e02dhc.pdf
../E02/e02dhc.pdf

6: weights½m� – const double Input

On entry: weights½r � 1� must be set to wr , the r th value in the set of weights, for
r ¼ 1; 2; . . . ;m. Zero weights are permitted and the corresponding points are ignored, except
when determining xmin , xmax , ymin and ymax (see Section 9.4). For advice on the choice of
weights, see the e02 Chapter Introduction.

Constraint: the number of data points with nonzero weight must be at least 16.

7: s – double Input

On entry: the smoothing factor, S. For advice on the choice of S, see Section 3 and Section 9.2.

Constraint: s > 0:0.

8: nxest – Integer Input
9: nyest – Integer Input

On entry: an upper bound for the number of knots nx and ny required in the x and y directions
respectively. In most practical situations, nxest ¼ nyest ¼ 5þ ffiffiffiffiffi

m
p

is sufficient. See also
Section 9.3.

Constraint: nxest � 8 and nyest � 8.

10: fp – double * Output

On exit: the weighted sum of squared residuals, �, of the computed spline approximation. fp
should equal S within a relative tolerance of 0.001 unless spline!nx ¼ spline!ny ¼ 8, when the
spline has no interior knots and so is simply a bicubic polynomial. For knots to be inserted, S
must be set to a value below the value of fp produced in this case.

11: rank – Integer * Output

On exit: rank gives the rank of the system of equations used to compute the final spline (as
d e t e r m i n e d b y a s u i t a b l e m a c h i n e - d e p e n d e n t t h r e s h o l d) . W h e n
rank ¼ spline!nx� 4ð Þ � spline!ny� 4ð Þ, the solution is unique; otherwise the system is
rank-deficient and the minimum-norm solution is computed. The latter case may be caused by too
small a value of S.

12: warmstartinf – double * Output

On exit: if the warm start option is used, its value must be left unchanged from the previous call.

13: spline – Nag_2dSpline *

Pointer to structure of type Nag_2dSpline with the following members:

nx – Integer Input/Output

On entry: if the warm start option is used, the value of nx must be left unchanged from the
previous call.

On exit: the total number of knots, nx, of the computed spline with respect to the x
variable.

lamda – double * Input/Output

On entry: a pointer to which if start ¼ Nag Cold, memory of size nxest is internally
a l l o c a t e d . I f t h e w a r m s t a r t o p t i o n i s u s e d , t h e v a l u e s
lamda½0�; lamda½1�; . . . ; lamda½nx� 1� must be left unchanged from the previous call.

On exit: lamda contains the complete set of knots �i associated with the x variable, i.e., the
interior knots lamda½4�; lamda½5�; . . . ; lamda½nx� 5� as well as the additional knots
lamda½0� ¼ lamda½1� ¼ lamda½2� ¼ lamda½3� ¼ xmin a n d

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.3

../E02/e02intro.pdf

lamda½nx� 4� ¼ lamda½nx� 3� ¼ lamda½nx� 2� ¼ lamda½nx� 1� ¼ xmax needed for the
B-spline representation (where xmin and xmax are as described in Section 3).

ny – Integer Input/Output

On entry: if the warm start option is used, the value of ny must be left unchanged from the
previous call.

On exit: the total number of knots, ny, of the computed spline with respect to the y variable.

mu – double * Input/Output

On entry: a pointer to which if start ¼ Nag Cold, memory of size nyest is internally
allocated. If the warm start option is used, the values mu½0�;mu½1�; . . . ;mu½ny� 1� must be
left unchanged from the previous call.

On exit: mu contains the complete set of knots �i associated with the y variable, i.e., the
interior knots mu½4�, mu½5�, . . ., mu½ny� 5� as well as the additional knots
mu½0� ¼ mu½1� ¼ mu½2� ¼ mu½3� ¼ ymin a n d
mu½ny� 4� ¼ mu½ny� 3� ¼ mu½ny� 2� ¼ mu½ny� 1� ¼ ymax needed for the B-spline
representation (where ymin and ymax are as described in Section 3).

c – double * Output

On exit: a pointer to which, if start ¼ Nag Cold, memory of size nxest� 4ð Þ � nyest� 4ð Þ
is internally allocated. c½ ny � 4

� �
� i� 1ð Þ þ j� 1� is the coefficient cij defined in

Section 3.

Note that when the information contained in the pointers lamda, mu and c is no longer of use, or
before a new call to nag_2d_spline_fit_scat (e02ddc) with the same spline, you should free this
storage using the NAG macro NAG_FREE. This storage will have been allocated only if this
function returns with fail:code ¼ NE NOERROR, NE_NUM_KNOTS_2D_GT_SCAT, NE_-
NUM_COEFF_GT, NE_NO_ADDITIONAL_KNOTS, NE_SPLINE_COEFF_CONV or, possibly,
NE_ALLOC_FAIL.

14: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

If the function fails with an error exit of NE_NUM_KNOTS_2D_GT_SCAT, NE_NUM_COEFF_GT,
NE_NO_ADDITIONAL_KNOTS or NE_SPLINE_COEFF_CONV, then a spline approximation is
returned, but it fails to satisfy the fitting criterion (see (2) and (3)) – perhaps by only a small amount,
however.

NE_ALL_ELEMENTS_EQUAL

On entry, all the values in the array x must not be equal.

On entry, all the values in the array y must not be equal.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument start had an illegal value.

NE_ENUMTYPE_WARM

start ¼ Nag Warm at the first call of this function. start must be set to start ¼ Nag Cold at the
first call.

e02ddc NAG Library Manual

e02ddc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_INT_ARG_LT

On entry, nxest ¼ valueh i.
Constraint: nxest � 8.

On entry, nyest ¼ valueh i.
Constraint: nyest � 8.

NE_NO_ADDITIONAL_KNOTS

No more knots added; the additional knot would coincide with an old one. Possibly an inaccurate
data point has too large a weight, or s is too small. s ¼ valueh i.

NE_NON_ZERO_WEIGHTS

On entry, the number of data points with nonzero weights ¼ valueh i.
Constraint: the number of nonzero weights � 16.

NE_NUM_COEFF_GT

No more knots can be added because the number of B-spline coefficients already exceeds m.
Either m or s is probably too small: m ¼ valueh i, s ¼ valueh i.

NE_NUM_KNOTS_2D_GT_SCAT

The number of knots required is greater than allowed by nxest or nyest, nxest ¼ valueh i,
nyest ¼ valueh i. Possibly s is too small, especially if nxest, nyest > 5þ

ffiffiffiffi
m
p

. s ¼ valueh i,
m ¼ valueh i.

NE_REAL_ARG_LE

On entry, s must not be less than or equal to 0.0: s ¼ valueh i.

NE_SPLINE_COEFF_CONV

The iterative process has failed to converge. Possibly s is too small: s ¼ valueh i.

7 Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals fp is
equal to the smoothing factor S, up to a specified relative tolerance of 0.001 – except that if nx ¼ 8 and
ny ¼ 8, fp may be significantly less than S: in this case the computed spline is simply the least squares
bicubic polynomial approximation of degree 3, i.e., a spline with no interior knots.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

The time taken for a call of nag_2d_spline_fit_scat (e02ddc) depends on the complexity of the shape of
the data, the value of the smoothing factor S, and the number of data points. If nag_2d_spline_fit_scat
(e02ddc) is to be called for different values of S, much time can be saved by setting start ¼ Nag Warm
after the first call.

It should be noted that choosing S very small considerably increases computation time.

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.5

9.2 Choice of S

If the weights have been correctly chosen (see the e02 Chapter Introduction), the standard deviation of
wrfr would be the same for all r, equal to �, say. In this case, choosing the smoothing factor S in the

range �2 m�
ffiffiffiffiffiffiffi
2m
p� �

, as suggested by Reinsch (1967), is likely to give a good start in the search for a
satisfactory value. Otherwise, experimenting with different values of S will be required from the start.

In that case, in view of computation time and memory requirements, it is recommended to start with a
very large value for S and so determine the least squares bicubic polynomial; the value returned for fp,
call it fp0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits –
say by a factor of 10 in the beginning, i.e., S ¼ fp0=10, S ¼ fp0=100, and so on, and more carefully as
the approximation shows more details.

To choose S very small is strongly discouraged. This considerably increases computation time and
memory requirements. It may also cause rank-deficiency (as indicated by the argument rank) and
endanger numerical stability.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. However, if nag_2d_spline_fit_scat (e02ddc) is
called with start ¼ Nag Warm, the knots returned may also depend on the smoothing factors of the
previous calls. Therefore if, after a number of trials with different values of S and start ¼ Nag Warm, a
fit can finally be accepted as satisfactory, it may be worthwhile to call nag_2d_spline_fit_scat (e02ddc)
once more with the selected value for S but now using start ¼ Nag Cold. Often, nag_2d_spline_fit_scat
(e02ddc) then returns an approximation with the same quality of fit but with fewer knots, which is
therefore better if data reduction is also important.

9.3 Choice of nxest and nyest

The number of knots may also depend on the upper bounds nxest and nyest. Indeed, if at a certain stage
in nag_2d_spline_fit_scat (e02ddc) the number of knots in one direction (say nx) has reached the value
of its upper bound (nxest), then from that moment on all subsequent knots are added in the other yð Þ
direction. This may indicate that the value of nxest is too small. On the other hand, it gives you the
option of limiting the number of knots the function locates in any direction. For example, by setting
nxest ¼ 8 (the lowest allowable value for nxest), you can indicate that you want an approximation which
is a simple cubic polynomial in the variable x.

9.4 Restriction of the Approximation Domain

The fit obtained is not defined outside the rectangle �4; �nx�3½ � � �4; �ny�3

� �
. The reason for taking the

extreme data values of x and y for these four knots is that, as is usual in data fitting, the fit cannot be
expected to give satisfactory values outside the data region. If, nevertheless, you require values over a
larger rectangle, this can be achieved by augmenting the data with two artificial data points a; c; 0ð Þ and
b; d; 0ð Þ with zero weight, where a; b½ � � c; d½ � denotes the enlarged rectangle.

9.5 Outline of Method Used

First suitable knot sets are built up in stages (starting with no interior knots in the case of a cold start but
with the knot set found in a previous call if a warm start is chosen). At each stage, a bicubic spline is
fitted to the data by least squares and �, the sum of squares of residuals, is computed. If � > S, a new
knot is added to one knot set or the other so as to reduce � at the next stage. The new knot is located in
an interval where the fit is particularly poor. Sooner or later, we find that � � S and at that point the knot
sets are accepted. The function then goes on to compute a spline which has these knot sets and which
satisfies the full fitting criterion specified by 2 and 3. The theoretical solution has � ¼ S. The function
computes the spline by an iterative scheme which is ended when � ¼ S within a relative tolerance of
0.001. The main part of each iteration consists of a linear least squares computation of special form. The
minimal least squares solution is computed wherever the linear system is found to be rank-deficient.

An exception occurs when the function finds at the start that, even with no interior knots nx ¼ ny ¼ 8
� �

,
the least squares spline already has its sum of squares of residuals � S. In this case, since this spline
(which is simply a bicubic polynomial) also has an optimal value for the smoothness measure �, namely
zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen too large.

e02ddc NAG Library Manual

e02ddc.6 Mark 24

../E02/e02intro.pdf

For further details of the algorithm and its use see Dierckx (1981b).

9.6 Evaluation of Computed Spline

The values of the computed spline at the points tx r � 1½ �; ty r � 1½ �ð Þ, for r ¼ 1; 2; . . . ; n, may be
obtained in the array ff, of length at least n, by the following code:

e02dec(n, tx, ty, ff, &spline, &fail)

where spline is a structure of type Nag_2dSpline which is an output argument of nag_2d_spline_fit_scat
(e02ddc).

To evaluate the computed spline on a kx by ky rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in tx q � 1½ �, for q ¼ 1; 2; . . . ; kx, and the y coordinates stored in
ty r � 1½ �, for r ¼ 1; 2; . . . ; ky, returning the results in the array fg which is of length at least kx� ky, the
following call may be used:

e02dfc(kx, ky, tx, ty, fg, &spline, &fail)

where spline is a structure of type Nag_2dSpline which is an output argument of nag_2d_spline_fit_scat
(e02ddc). The result of the spline evaluated at grid point q; rð Þ is returned in element
ky� q � 1ð Þ þ r� 1½ � of the array fg.

10 Example

This example program reads in a value of m, followed by a set of m data points xr; yr; frð Þ and their
weights wr. It then calls nag_2d_spline_fit_scat (e02ddc) to compute a bicubic spline approximation for
one specified value of S, and prints the values of the computed knots and B-spline coefficients. Finally it
evaluates the spline at a small sample of points on a rectangular grid.

10.1 Program Text

/* nag_2d_spline_fit_scat (e02ddc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 6 revised, 2000.
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

Integer exit_status = 0, i, j, m, npx, npy, nx, nxest, ny, nyest, rank;
NagError fail;
Nag_2dSpline spline;
Nag_Start start;
double delta, *f = 0, *fg = 0, fp, *px = 0, *py = 0, s, warmstartinf;
double *weights = 0, *x = 0, xhi, xlo, *y = 0, yhi, ylo;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.mu = 0;
spline.c = 0;

nxest = 14;
nyest = 14;
printf("nag_2d_spline_fit_scat (e02ddc) Example Program Results\n");
scanf("%*[^\n]"); /* Skip heading in data file */

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.7

../E02/e02dec.pdf

/* Input the number of data-points m. */
scanf("%ld", &m);
if (m >= 16)

{
if (!(f = NAG_ALLOC(m, double)) ||

!(weights = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(m, double)) ||
!(y = NAG_ALLOC(m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid m.\n");
exit_status = 1;
return exit_status;

}
/* Input the data-points and the weights. */
for (i = 0; i < m; i++)

scanf("%lf%lf%lf%lf", &x[i], &y[i], &f[i], &weights[i]);
start = Nag_Cold;
if (scanf("%lf", &s) != EOF)

{
/* Determine the spline approximation. */

/* nag_2d_spline_fit_scat (e02ddc).
* Least-squares bicubic spline fit with automatic knot
* placement, two variables (scattered data)
*/

nag_2d_spline_fit_scat(start, m, x, y, f, weights, s, nxest, nyest, &fp,
&rank, &warmstartinf, &spline, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_2d_spline_fit_scat (e02ddc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
nx = spline.nx;
ny = spline.ny;
printf("\nCalling with smoothing factor s = %13.4e, nx = %1ld,"

" ny = %1ld\n", s, nx, ny);

printf("rank deficiency = %1ld\n\n", (nx-4)*(ny-4)-rank);

/* Print the knot sets, lamda and mu. */
printf("Distinct knots in x direction located at\n");
for (j = 3; j < spline.nx-3; j++)

printf("%12.4f%s", spline.lamda[j],
((j-3)%5 == 4 || j == spline.nx-4)?"\n":" ");

printf("\nDistinct knots in y direction located at\n");
for (j = 3; j < spline.ny-3; j++)

printf("%12.4f%s", spline.mu[j],
((j-3)%5 == 4 || j == spline.ny-4)?"\n":" ");

printf("\nThe B-spline coefficients:\n\n");
for (i = 0; i < ny-4; i++)

{
for (j = 0; j < nx-4; j++)

printf("%9.2f", spline.c[i+j*(ny-4)]);
printf("\n");

}

printf("\n Sum of squared residuals fp = %13.4e\n", fp);
if (nx == 8 && ny == 8)

printf("The spline is the least-squares bi-cubic polynomial\n");

/* Evaluate the spline on a rectangular grid at npx*npy points
* over the domain (xlo to xhi) x (ylo to yhi).

e02ddc NAG Library Manual

e02ddc.8 Mark 24

*/
scanf("%ld%lf%lf", &npx, &xlo, &xhi);
scanf("%ld%lf%lf", &npy, &ylo, &yhi);

if (npx >= 1 && npy >= 1)
{

if (!(fg = NAG_ALLOC(npx*npy, double)) ||
!(px = NAG_ALLOC(npx, double)) ||
!(py = NAG_ALLOC(npy, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid npx or npy.\n");
exit_status = 1;
return exit_status;

}
delta = (xhi-xlo)/(npx-1);
for (i = 0; i < npx; i++)

px[i] = MIN(xhi, xlo+i*delta);
for (i = 0; i < npy; i++)

py[i] = MIN(yhi, ylo+i*delta);

/* nag_2d_spline_eval_rect (e02dfc).
* Evaluation of bicubic spline, at a mesh of points
*/

nag_2d_spline_eval_rect(npx, npy, px, py, fg, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_2d_spline_eval_rect (e02dfc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf("\nValues of computed spline:\n\n");
printf(" x");
for (i = 0; i < npx; i++)

printf("%8.2f ", px[i]);
printf("\n y\n");
for (i = npy-1; i >= 0; i--)

{
printf("%8.2f ", py[i]);
for (j = 0; j < npx; j++)

printf("%8.2f ", fg[npy*j+i]);
printf("\n");

}
/* Free memory used by spline */
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);
NAG_FREE(spline.c);
NAG_FREE(fg);
NAG_FREE(px);
NAG_FREE(py);

}
END:
NAG_FREE(f);
NAG_FREE(weights);
NAG_FREE(x);
NAG_FREE(y);
return exit_status;

}

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.9

10.2 Program Data

nag_2d_spline_fit_scat (e02ddc) Example Program Data
30
11.16 1.24 22.15 1.00
12.85 3.06 22.11 1.00
19.85 10.72 7.97 1.00
19.72 1.39 16.83 1.00
15.91 7.74 15.30 1.00
0.00 20.00 34.60 1.00

20.87 20.00 5.74 1.00
3.45 12.78 41.24 1.00

14.26 17.87 10.74 1.00
17.43 3.46 18.60 1.00
22.80 12.39 5.47 1.00
7.58 1.98 29.87 1.00

25.00 11.87 4.40 1.00
0.00 0.00 58.20 1.00
9.66 20.00 4.73 1.00
5.22 14.66 40.36 1.00

17.25 19.57 6.43 1.00
25.00 3.87 8.74 1.00
12.13 10.79 13.71 1.00
22.23 6.21 10.25 1.00
11.52 8.53 15.74 1.00
15.20 0.00 21.60 1.00
7.54 10.69 19.31 1.00

17.32 13.78 12.11 1.00
2.14 15.03 53.10 1.00
0.51 8.37 49.43 1.00

22.69 19.63 3.25 1.00
5.47 17.13 28.63 1.00

21.67 14.36 5.52 1.00
3.31 0.33 44.08 1.00

10.0
7 3.0 21.0
6 2.0 17.0

10.3 Program Results

nag_2d_spline_fit_scat (e02ddc) Example Program Results

Calling with smoothing factor s = 1.0000e+01, nx = 10, ny = 9
rank deficiency = 0

Distinct knots in x direction located at
0.0000 9.7575 18.2582 25.0000

Distinct knots in y direction located at
0.0000 9.0008 20.0000

The B-spline coefficients:

58.16 46.31 6.01 32.00 5.86 -23.78
63.78 46.74 33.37 18.30 14.36 15.95
40.84 -33.79 5.17 13.10 -4.13 19.37
75.44 111.92 6.94 17.33 7.09 -13.24
34.61 -42.61 25.20 -1.96 10.37 -9.09

Sum of squared residuals fp = 1.0002e+01

Values of computed spline:

x 3.00 6.00 9.00 12.00 15.00 18.00 21.00
y

17.00 40.74 28.62 19.84 14.29 11.21 9.46 7.09
14.00 48.34 33.97 21.56 14.71 12.32 10.82 7.15
11.00 37.26 24.46 17.21 14.14 13.02 11.23 7.29
8.00 30.25 19.66 16.90 16.28 15.21 12.71 8.99
5.00 36.64 26.75 23.07 21.13 18.97 15.90 11.98

e02ddc NAG Library Manual

e02ddc.10 Mark 24

2.00 45.04 33.70 26.25 22.88 21.62 19.39 13.40

e02 – Curve and Surface Fitting e02ddc

Mark 24 e02ddc.11 (last)

	e02ddc
	1 Purpose
	2 Specification
	3 Description
	4 References
	de Boor (1972)
	Dierckx (1981a)
	Dierckx (1981b)
	Hayes and Halliday (1974)
	Peters and Wilkinson (1970)
	Reinsch (1967)

	5 Arguments
	start
	m
	x
	y
	f
	weights
	s
	nxest
	nyest
	fp
	rank
	warmstartinf
	spline
	nx
	lamda
	ny
	mu
	c

	fail

	6 Error Indicators and Warnings
	NE_ALL_ELEMENTS_EQUAL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ENUMTYPE_WARM
	NE_INT_ARG_LT
	NE_NO_ADDITIONAL_KNOTS
	NE_NON_ZERO_WEIGHTS
	NE_NUM_COEFF_GT
	NE_NUM_KNOTS_2D_GT_SCAT
	NE_REAL_ARG_LE
	NE_SPLINE_COEFF_CONV

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Choice of ? S?
	9.3 Choice of nxest and nyest
	9.4 Restriction of the Approximation Domain
	9.5 Outline of Method Used
	9.6 Evaluation of Computed Spline

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

