e01 – Interpolation

NAG Library Function Document

nag 2d shep eval (e01shc)

1 Purpose

nag_2d_shep_eval (e01shc) evaluates the two-dimensional interpolating function generated by nag_2d_shep_interp (e01sgc) and its first partial derivatives.

2 Specification

```
#include <nag.h>
#include <nage01.h>

void nag_2d_shep_eval (Integer m, const double x[], const double y[],
        const double f[], const Integer iq[], const double rq[], Integer n,
        const double u[], const double v[], double q[], double qx[],
        double qy[], NagError *fail)
```

3 Description

nag_2d_shep_eval (e01shc) takes as input the interpolant Q(x,y) of a set of scattered data points (x_r, y_r, f_r) , for r = 1, 2, ..., m, as computed by nag_2d_shep_interp (e01sgc), and evaluates the interpolant and its first partial derivatives at the set of points (u_i, v_i) , for i = 1, 2, ..., n.

nag 2d shep eval (e01shc) must only be called after a call to nag 2d shep interp (e01sgc).

This function is derived from the function QS2GRD described by Renka (1988).

4 References

Renka R J (1988) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data *ACM Trans. Math. Software* **14** 149–150

5 Arguments

 $\begin{array}{lll} 1: & \textbf{m} - \text{Integer} & & \textit{Input} \\ 2: & \textbf{x}[\textbf{m}] - \text{const double} & & \textit{Input} \\ 3: & \textbf{y}[\textbf{m}] - \text{const double} & & & \textit{Input} \\ 4: & \textbf{f}[\textbf{m}] - \text{const double} & & & \textit{Input} \end{array}$

On entry: \mathbf{m} , \mathbf{x} , \mathbf{y} and \mathbf{f} must be the same values as were supplied in the preceding call to nag_2d_shep_interp (e01sgc).

5: $iq[(2 \times m + 1)]$ - const Integer Input

On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).

6: $rq[(6 \times m + 5)]$ - const double Input

On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).

7: \mathbf{n} - Integer Input

On entry: n, the number of evaluation points.

Constraint: $\mathbf{n} \geq 1$.

Mark 24 e01shc.1

e01shc NAG Library Manual

8: $\mathbf{u}[\mathbf{n}]$ - const double Input 9: $\mathbf{v}[\mathbf{n}]$ - const double Input

On entry: the evaluation points (u_i, v_i) , for i = 1, 2, ..., n.

10: $\mathbf{q}[\mathbf{n}]$ – double

On exit: the values of the interpolant at (u_i, v_i) , for i = 1, 2, ..., n. If any of these evaluation points lie outside the region of definition of the interpolant the corresponding entries in \mathbf{q} are set to the largest machine representable number (see nag_real_largest_number (X02ALC)), and nag_2d_shep_eval (e01shc) returns with **fail.code** = NE_BAD_INTERPOLANT.

11: $\mathbf{qx}[\mathbf{n}]$ - double

12: $\mathbf{qy}[\mathbf{n}]$ - double

Output

On exit: the values of the partial derivatives of the interpolant Q(x,y) at (u_i,v_i) , for $i=1,2,\ldots,n$. If any of these evaluation points lie outside the region of definition of the interpolant, the corresponding entries in $\mathbf{q}\mathbf{x}$ and $\mathbf{q}\mathbf{y}$ are set to the largest machine representable number (see nag real largest number (X02ALC)), and nag 2d shep eval (e01shc) returns with

13: **fail** – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

fail.code = NE BAD INTERPOLANT.

NE_BAD_INTERPOLANT

On entry, at least one evaluation point lies outside the region of definition of the interpolant. At all such points the corresponding values in \mathbf{q} , $\mathbf{q}\mathbf{x}$ and $\mathbf{q}\mathbf{y}$ have been set to nag_real_largest_number = $\langle value \rangle$.

NE BAD PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE INT

On entry, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{m} \geq 6$. On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} > 1$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE INVALID ARRAY

On entry, values in **iq** appear to be invalid. Check that **iq** has not been corrupted between calls to nag 2d shep interp (e01sgc) and nag 2d shep eval (e01shc).

On entry, values in **rq** appear to be invalid. Check that **rq** has not been corrupted between calls to nag 2d shep interp (e01sgc) and nag 2d shep eval (e01shc).

7 Accuracy

Computational errors should be negligible in most practical situations.

e01shc.2 Mark 24

e01 – Interpolation

8 Parallelism and Performance

nag_2d_shep_eval (e01shc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to nag_2d_shep_eval (e01shc) will depend in general on the distribution of the data points. If \mathbf{x} and \mathbf{y} are approximately uniformly distributed, then the time taken should be only O(n). At worst O(mn) time will be required.

10 Example

See Section 10 in nag_2d_shep_interp (e01sgc).

Mark 24 e01shc.3 (last)