nag_jumpdiff_merton_greeks (s30jbc) computes the European option price together with its sensitivities (Greeks) using the Merton jump-diffusion model.
nag_jumpdiff_merton_greeks (s30jbc) uses Merton's jump-diffusion model (
Merton (1976)) to compute the price of a European option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. Merton's model assumes that the asset price is described by a Brownian motion with drift, as in the Black–Scholes–Merton case, together with a compound Poisson process to model the jumps. The corresponding stochastic differential equation is,
This leads to the following price for a European option (see
Haug (2007))
where
is the time to expiry;
is the strike price;
is the annual risk-free interest rate;
is the Black–Scholes–Merton option pricing formula for a European call (see
nag_bsm_price (s30aac)).
where
is the total volatility including jumps;
is the expected number of jumps given as an average per year;
is the proportion of the total volatility due to jumps.
The value of a put is obtained by substituting the Black–Scholes–Merton put price for .
Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of Financial Economics 3 125–144
- 1:
order – Nag_OrderTypeInput
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint:
or .
- 2:
option – Nag_CallPutInput
On entry: determines whether the option is a call or a put.
- A call; the holder has a right to buy.
- A put; the holder has a right to sell.
Constraint:
or .
- 3:
m – IntegerInput
On entry: the number of strike prices to be used.
Constraint:
.
- 4:
n – IntegerInput
On entry: the number of times to expiry to be used.
Constraint:
.
- 5:
x[m] – const doubleInput
On entry: must contain
, the th strike price, for .
Constraint:
, where , the safe range parameter, for .
- 6:
s – doubleInput
On entry: , the price of the underlying asset.
Constraint:
, where , the safe range parameter.
- 7:
t[n] – const doubleInput
On entry: must contain
, the th time, in years, to expiry, for .
Constraint:
, where , the safe range parameter, for .
- 8:
sigma – doubleInput
On entry: , the annual total volatility, including jumps.
Constraint:
.
- 9:
r – doubleInput
On entry: , the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint:
.
- 10:
lambda – doubleInput
On entry: , the number of expected jumps per year.
Constraint:
.
- 11:
jvol – doubleInput
On entry: the proportion of the total volatility associated with jumps.
Constraint:
.
- 12:
p[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: contains , the option price evaluated for the strike price at expiry for and .
- 13:
delta[] – doubleOutput
Note: the
th element of the matrix is stored in
- when ;
- when .
On exit: the
array
delta contains the sensitivity,
, of the option price to change in the price of the underlying asset.
- 14:
gamma[] – doubleOutput
Note: the
th element of the matrix is stored in
- when ;
- when .
On exit: the
array
gamma contains the sensitivity,
, of
delta to change in the price of the underlying asset.
- 15:
vega[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the first-order Greek measuring the sensitivity of the option price to change in the volatility of the underlying asset, i.e., , for and .
- 16:
theta[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the first-order Greek measuring the sensitivity of the option price to change in time, i.e., , for and , where .
- 17:
rho[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the first-order Greek measuring the sensitivity of the option price to change in the annual risk-free interest rate, i.e., , for and .
- 18:
vanna[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the second-order Greek measuring the sensitivity of the first-order Greek to change in the volatility of the asset price, i.e., , for and .
- 19:
charm[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the second-order Greek measuring the sensitivity of the first-order Greek to change in the time, i.e., , for and .
- 20:
speed[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the third-order Greek measuring the sensitivity of the second-order Greek to change in the price of the underlying asset, i.e., , for and .
- 21:
colour[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the third-order Greek measuring the sensitivity of the second-order Greek to change in the time, i.e., , for and .
- 22:
zomma[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the third-order Greek measuring the sensitivity of the second-order Greek to change in the volatility of the underlying asset, i.e., , for and .
- 23:
vomma[] – doubleOutput
Note: where
appears in this document, it refers to the array element
- when ;
- when .
On exit: , contains the second-order Greek measuring the sensitivity of the first-order Greek to change in the volatility of the underlying asset, i.e., , for and .
- 24:
fail – NagError *Input/Output
-
The NAG error argument (see
Section 3.6 in the Essential Introduction).
The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function,
, occurring in
. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the
machine precision (see
nag_cumul_normal (s15abc) and
nag_erfc (s15adc)). An accuracy close to
machine precision can generally be expected.
nag_jumpdiff_merton_greeks (s30jbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the
Users' Note for your implementation for any additional implementation-specific information.
None.
This example computes the price of two European calls with jumps. The time to expiry is months, the stock price is and strike prices are and respectively. The number of jumps per year is and the percentage of the total volatility due to jumps is . The risk-free interest rate is per year while the total volatility is per year.