nag_zher (f16spc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zher (f16spc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zher (f16spc) performs a Hermitian rank-1 update on a complex Hermitian matrix.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_zher (Nag_OrderType order, Nag_UploType uplo, Integer n, double alpha, const Complex x[], Integer incx, double beta, Complex a[], Integer pda, NagError *fail)

3  Description

nag_zher (f16spc) performs the Hermitian rank-1 update operation
AαxxH+βA,
where A is an n by n complex Hermitian matrix, x is an n-element complex vector, while α and β are real scalars.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     nIntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     alphadoubleInput
On entry: the scalar α.
5:     x[dim]const ComplexInput
Note: the dimension, dim, of the array x must be at least max1,1+n-1incx.
On entry: the vector x.
6:     incxIntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
7:     betadoubleInput
On entry: the scalar β.
8:     a[dim]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least max1,pda×n.
On entry: the n by n Hermitian matrix A.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.
9:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,n.
10:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax1,n.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

Perform rank-1 update of complex Hermitian matrix A using vector x:
A A - x xH ,
where A is the 4 by 4 Hermitian matrix given by
A = 4.0+0.0i 7.0-4.0i -0.60+2.2i -4.0+3.0i 7.0+4.0i 14.0+0.0i 0.30+1.2i -4.7+2.1i -0.6-2.2i 0.3-1.2i 2.04+0.0i -5.9-0.1i -4.0-3.0i -4.7+2.1i -5.90+0.1i 6.0+0.0i
and
x = 2.0+1.0i 2.0+3.0i 0.2-1.0i -1.0-2.0i .

10.1  Program Text

Program Text (f16spce.c)

10.2  Program Data

Program Data (f16spce.d)

10.3  Program Results

Program Results (f16spce.r)


nag_zher (f16spc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014