nag_dsp_norm (f16rdc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_dsp_norm (f16rdc)

+ Contents

    1  Purpose
    7  Accuracy
    10  Example

1  Purpose

nag_dsp_norm (f16rdc) calculates the value of the 1-norm, the -norm, the Frobenius norm or the maximum absolute value of the elements of a real n by n symmetric matrix, stored in packed form.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_dsp_norm (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo, Integer n, const double ap[], double *r, NagError *fail)

3  Description

Given a real n by n symmetric matrix, A, in packed storage, nag_dsp_norm (f16rdc) calculates one of the values given by
A1=maxji=1naij,
A=maxij= 1naij,
AF=i=1nj=1n aij21/2
or
maxi,jaij.
Note that, since A is symmetric, A1=A.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     normNag_NormTypeInput
On entry: specifies the value to be returned.
norm=Nag_OneNorm
The 1-norm.
norm=Nag_InfNorm
The -norm.
norm=Nag_FrobeniusNorm
The Frobenius (or Euclidean) norm.
norm=Nag_MaxNorm
The value maxi,jaij (not a norm).
Constraint: norm=Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm.
3:     uploNag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
4:     nIntegerInput
On entry: n, the order of the matrix A.
If n=0, then n is set to zero.
Constraint: n0.
5:     ap[dim]const doubleInput
Note: the dimension, dim, of the array ap must be at least max1, n × n+1 / 2 .
On entry: the n by n symmetric matrix A, packed by rows or columns.
The storage of elements Aij depends on the order and uplo arguments as follows:
  • if order=Nag_ColMajor and uplo=Nag_Upper,
              Aij is stored in ap[j-1×j/2+i-1], for ij;
  • if order=Nag_ColMajor and uplo=Nag_Lower,
              Aij is stored in ap[2n-j×j-1/2+i-1], for ij;
  • if order=Nag_RowMajor and uplo=Nag_Upper,
              Aij is stored in ap[2n-i×i-1/2+j-1], for ij;
  • if order=Nag_RowMajor and uplo=Nag_Lower,
              Aij is stored in ap[i-1×i/2+j-1], for ij.
6:     rdouble *Output
On exit: the value of the norm specified by norm.
7:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

See Section 10 in nag_dppcon (f07ggc) and nag_dspcon (f07pgc).

nag_dsp_norm (f16rdc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014