nag_sparse_nherm_sort (f11znc) (PDF version)
f11 Chapter Contents
f11 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_sparse_nherm_sort (f11znc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_sparse_nherm_sort (f11znc) sorts the nonzero elements of a complex sparse non-Hermitian matrix, represented in coordinate storage format.

2  Specification

#include <nag.h>
#include <nagf11.h>
void  nag_sparse_nherm_sort (Integer n, Integer *nnz, Complex a[], Integer irow[], Integer icol[], Nag_SparseNsym_Dups dup, Nag_SparseNsym_Zeros zero, Integer istr[], NagError *fail)

3  Description

nag_sparse_nherm_sort (f11znc) takes a coordinate storage (CS) representation (see Section 2.1.1 in the f11 Chapter Introduction) of a sparse n by n complex non-Hermitian matrix A, and reorders the nonzero elements by increasing row index and increasing column index within each row. Entries with duplicate row and column indices may be removed, or the values may be summed. Any entries with zero values may optionally be removed.
The function also returns a pointer array istr to the starting address of each row in A.

4  References

None.

5  Arguments

1:     nIntegerInput
On entry: n, the order of the matrix A.
Constraint: n1.
2:     nnzInteger *Input/Output
On entry: the number of nonzero elements in the matrix A.
Constraint: nnz0.
On exit: the number of nonzero elements with unique row and column indices.
3:     a[dim]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least max1,nnz.
On entry: the nonzero elements of the matrix A. These may be in any order and there may be multiple nonzero elements with the same row and column indices.
On exit: the nonzero elements ordered by increasing row index, and by increasing column index within each row. Each nonzero element has a unique row and column index.
4:     irow[dim]IntegerInput/Output
Note: the dimension, dim, of the array irow must be at least max1,nnz.
On entry: the row indices corresponding to the nonzero elements supplied in the array a.
Constraint: 1irow[i]n, for i=0,1,,nnz-1.
On exit: the first nnz elements contain the row indices corresponding to the nonzero elements returned in the array a.
5:     icol[dim]IntegerInput/Output
Note: the dimension, dim, of the array icol must be at least max1,nnz.
On entry: the column indices corresponding to the nonzero elements supplied in the array a.
Constraint: 1icol[i]n, for i=0,1,,nnz-1.
On exit: the first nnz elements contain the row indices corresponding to the nonzero elements returned in the array a.
6:     dupNag_SparseNsym_DupsInput
On entry: indicates how any nonzero elements with duplicate row and column indices are to be treated.
dup=Nag_SparseNsym_RemoveDups
The entries are removed.
dup=Nag_SparseNsym_SumDups
The relevant values in a are summed.
dup=Nag_SparseNsym_FailDups
The function fails with fail.code= NE_NON_ZERO_DUP on detecting a duplicate.
Constraint: dup=Nag_SparseNsym_RemoveDups, Nag_SparseNsym_SumDups or Nag_SparseNsym_FailDups.
7:     zeroNag_SparseNsym_ZerosInput
On entry: indicates how any elements with zero values in array a are to be treated.
zero=Nag_SparseNsym_RemoveZeros
The entries are removed.
zero=Nag_SparseNsym_KeepZeros
The entries are kept.
zero=Nag_SparseNsym_FailZeros
The function fails with fail.code= NE_ZERO_COEFF on detecting a zero.
Constraint: zero=Nag_SparseNsym_RemoveZeros, Nag_SparseNsym_KeepZeros or Nag_SparseNsym_FailZeros.
8:     istr[n+1]IntegerOutput
On exit: istr[i-1]-1, for i=1,2,,n, is the starting address in the arrays a, irow and icol of row i of the matrix A. istr[n]-1 is the address of the last nonzero element in A plus one.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n1.
On entry, nnz=value.
Constraint: nnz0.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_INVALID_CS
On entry, i=value, icol[i-1]=value and n=value.
Constraint: icol[i-1]1 and icol[i-1]n.
On entry, i=value, irow[i-1]=value and n=value.
Constraint: irow[i-1]1 and irow[i-1]n.
NE_NON_ZERO_DUP
On entry, a duplicate entry has been found in row I and column J: I=value, J=value.
NE_ZERO_COEFF
On entry, a zero entry has been found in row I and column J: I=value, J=value.

7  Accuracy

Not applicable.

8  Parallelism and Performance

Not applicable.

9  Further Comments

The time taken for a call to nag_sparse_nherm_sort (f11znc) is proportional to nnz.
Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries then istr[i-1]=istr[i].

10  Example

This example reads the CS representation of a complex sparse matrix A, calls nag_sparse_nherm_sort (f11znc) to reorder the nonzero elements, and outputs the original and the reordered representations.

10.1  Program Text

Program Text (f11znce.c)

10.2  Program Data

Program Data (f11znce.d)

10.3  Program Results

Program Results (f11znce.r)


nag_sparse_nherm_sort (f11znc) (PDF version)
f11 Chapter Contents
f11 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014