nag_zggev (f08wnc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zggev (f08wnc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zggev (f08wnc) computes for a pair of n by n complex nonsymmetric matrices A,B the generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm.

2  Specification

#include <nag.h>
#include <nagf08.h>
void  nag_zggev (Nag_OrderType order, Nag_LeftVecsType jobvl, Nag_RightVecsType jobvr, Integer n, Complex a[], Integer pda, Complex b[], Integer pdb, Complex alpha[], Complex beta[], Complex vl[], Integer pdvl, Complex vr[], Integer pdvr, NagError *fail)

3  Description

A generalized eigenvalue for a pair of matrices A,B is a scalar λ or a ratio α/β=λ, such that A-λB is singular. It is usually represented as the pair α,β, as there is a reasonable interpretation for β=0, and even for both being zero.
The right generalized eigenvector vj corresponding to the generalized eigenvalue λj of A,B satisfies
A vj = λj B vj .
The left generalized eigenvector uj corresponding to the generalized eigenvalue λj of A,B satisfies
ujH A = λj ujH B ,
where ujH is the conjugate-transpose of uj.
All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem Ax=λBx, where A and B are complex, square matrices, are determined using the QZ algorithm. The complex QZ algorithm consists of three stages:
1. A is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the same time B is reduced to upper triangular form.
2. A is further reduced to triangular form while the triangular form of B is maintained and the diagonal elements of B are made real and non-negative. This is the generalized Schur form of the pair A,B .
This function does not actually produce the eigenvalues λj, but instead returns αj and βj such that
λj=αj/βj,  j=1,2,,n.
The division by βj becomes your responsibility, since βj may be zero, indicating an infinite eigenvalue.
3. If the eigenvectors are required they are obtained from the triangular matrices and then transformed back into the original coordinate system.

4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–303

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     jobvlNag_LeftVecsTypeInput
On entry: if jobvl=Nag_NotLeftVecs, do not compute the left generalized eigenvectors.
If jobvl=Nag_LeftVecs, compute the left generalized eigenvectors.
Constraint: jobvl=Nag_NotLeftVecs or Nag_LeftVecs.
3:     jobvrNag_RightVecsTypeInput
On entry: if jobvr=Nag_NotRightVecs, do not compute the right generalized eigenvectors.
If jobvr=Nag_RightVecs, compute the right generalized eigenvectors.
Constraint: jobvr=Nag_NotRightVecs or Nag_RightVecs.
4:     nIntegerInput
On entry: n, the order of the matrices A and B.
Constraint: n0.
5:     a[dim]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least max1,pda×n.
The i,jth element of the matrix A is stored in
  • a[j-1×pda+i-1] when order=Nag_ColMajor;
  • a[i-1×pda+j-1] when order=Nag_RowMajor.
On entry: the matrix A in the pair A,B.
On exit: a has been overwritten.
6:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: pdamax1,n.
7:     b[dim]ComplexInput/Output
Note: the dimension, dim, of the array b must be at least max1,pdb×n.
The i,jth element of the matrix B is stored in
  • b[j-1×pdb+i-1] when order=Nag_ColMajor;
  • b[i-1×pdb+j-1] when order=Nag_RowMajor.
On entry: the matrix B in the pair A,B.
On exit: b has been overwritten.
8:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraint: pdbmax1,n.
9:     alpha[n]ComplexOutput
On exit: see the description of beta.
10:   beta[n]ComplexOutput
On exit: alpha[j-1]/beta[j-1], for j=1,2,,n, will be the generalized eigenvalues.
Note:  the quotients alpha[j-1]/beta[j-1] may easily overflow or underflow, and beta[j-1] may even be zero. Thus, you should avoid naively computing the ratio αj/βj. However, maxαj will always be less than and usually comparable with a2 in magnitude, and maxβj will always be less than and usually comparable with b2.
11:   vl[dim]ComplexOutput
Note: the dimension, dim, of the array vl must be at least
  • max1,pdvl×n when jobvl=Nag_LeftVecs;
  • 1 otherwise.
The ith element of the jth vector is stored in
  • vl[j-1×pdvl+i-1] when order=Nag_ColMajor;
  • vl[i-1×pdvl+j-1] when order=Nag_RowMajor.
On exit: if jobvl=Nag_LeftVecs, the left generalized eigenvectors uj are stored one after another in the columns of vl, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have real part+imag. part=1.
If jobvl=Nag_NotLeftVecs, vl is not referenced.
12:   pdvlIntegerInput
On entry: the stride used in the array vl.
Constraints:
  • if jobvl=Nag_LeftVecs, pdvl max1,n ;
  • otherwise pdvl1.
13:   vr[dim]ComplexOutput
Note: the dimension, dim, of the array vr must be at least
  • max1,pdvr×n when jobvr=Nag_RightVecs;
  • 1 otherwise.
The ith element of the jth vector is stored in
  • vr[j-1×pdvr+i-1] when order=Nag_ColMajor;
  • vr[i-1×pdvr+j-1] when order=Nag_RowMajor.
On exit: if jobvr=Nag_RightVecs, the right generalized eigenvectors vj are stored one after another in the columns of vr, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have real part+imag. part=1.
If jobvr=Nag_NotRightVecs, vr is not referenced.
14:   pdvrIntegerInput
On entry: the stride used in the array vr.
Constraints:
  • if jobvr=Nag_RightVecs, pdvr max1,n ;
  • otherwise pdvr1.
15:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_EIGENVECTORS
A failure occurred in nag_dtgevc (f08ykc) while computing generalized eigenvectors.
NE_ENUM_INT_2
On entry, jobvl=value, pdvl=value and n=value.
Constraint: if jobvl=Nag_LeftVecs, pdvl max1,n ;
otherwise pdvl1.
On entry, jobvr=value, pdvr=value and n=value.
Constraint: if jobvr=Nag_RightVecs, pdvr max1,n ;
otherwise pdvr1.
NE_INT
On entry, n=value.
Constraint: n0.
On entry, pda=value.
Constraint: pda>0.
On entry, pdb=value.
Constraint: pdb>0.
On entry, pdvl=value.
Constraint: pdvl>0.
On entry, pdvr=value.
Constraint: pdvr>0.
NE_INT_2
On entry, pda=value and n=value.
Constraint: pdamax1,n.
On entry, pdb=value and n=value.
Constraint: pdbmax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_ITERATION_QZ
The QZ iteration failed. No eigenvectors have been calculated but alpha and beta should be correct from element value.
The QZ iteration failed with an unexpected error, please contact NAG.

7  Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrices A+E and B+F, where
E,F F = Oε A,B F ,
and ε is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.
Note:  interpretation of results obtained with the QZ algorithm often requires a clear understanding of the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in relation to the significance of small values of αj and βj. It should be noted that if αj and βj are both small for any j, it may be that no reliance can be placed on any of the computed eigenvalues λi=αi/βi. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice on determining the sensitivity of the eigenvalues to perturbations in the data.

8  Parallelism and Performance

nag_zggev (f08wnc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zggev (f08wnc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The total number of floating-point operations is proportional to n3.
The real analogue of this function is nag_dggev (f08wac).

10  Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A,B, where
A = -21.10-22.50i 53.50-50.50i -34.50+127.50i 7.50+00.50i -0.46-07.78i -3.50-37.50i -15.50+058.50i -10.50-01.50i 4.30-05.50i 39.70-17.10i -68.50+012.50i -7.50-03.50i 5.50+04.40i 14.40+43.30i -32.50-046.00i -19.00-32.50i
and
B = 1.00-5.00i 1.60+1.20i -3.00+0.00i 0.00-1.00i 0.80-0.60i 3.00-5.00i -4.00+3.00i -2.40-3.20i 1.00+0.00i 2.40+1.80i -4.00-5.00i 0.00-3.00i 0.00+1.00i -1.80+2.40i 0.00-4.00i 4.00-5.00i .

10.1  Program Text

Program Text (f08wnce.c)

10.2  Program Data

Program Data (f08wnce.d)

10.3  Program Results

Program Results (f08wnce.r)


nag_zggev (f08wnc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014