NAG Library Function Document
nag_dsbgvx (f08ubc)
1 Purpose
nag_dsbgvx (f08ubc) computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form
where
and
are symmetric and banded, and
is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.
2 Specification
#include <nag.h> |
#include <nagf08.h> |
void |
nag_dsbgvx (Nag_OrderType order,
Nag_JobType job,
Nag_RangeType range,
Nag_UploType uplo,
Integer n,
Integer ka,
Integer kb,
double ab[],
Integer pdab,
double bb[],
Integer pdbb,
double q[],
Integer pdq,
double vl,
double vu,
Integer il,
Integer iu,
double abstol,
Integer *m,
double w[],
double z[],
Integer pdz,
Integer jfail[],
NagError *fail) |
|
3 Description
The generalized symmetric-definite band problem
is first reduced to a standard band symmetric problem
where
is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and
Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the required eigenvalues and eigenvectors, and the eigenvectors are then backtransformed to the eigenvectors of the original problem.
The eigenvectors are normalized so that
4 References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
http://www.netlib.org/lapack/lug
Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16 41–44
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in Numerical Analysis (ed D A H Jacobs) Academic Press
5 Arguments
- 1:
order – Nag_OrderTypeInput
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint:
or .
- 2:
job – Nag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
- Only eigenvalues are computed.
- Eigenvalues and eigenvectors are computed.
Constraint:
or .
- 3:
range – Nag_RangeTypeInput
On entry: if
, all eigenvalues will be found.
If , all eigenvalues in the half-open interval will be found.
If
, the
ilth to
iuth eigenvalues will be found.
Constraint:
, or .
- 4:
uplo – Nag_UploTypeInput
On entry: if
, the upper triangles of
and
are stored.
If , the lower triangles of and are stored.
Constraint:
or .
- 5:
n – IntegerInput
On entry: , the order of the matrices and .
Constraint:
.
- 6:
ka – IntegerInput
On entry: if
, the number of superdiagonals,
, of the matrix
.
If , the number of subdiagonals, , of the matrix .
Constraint:
.
- 7:
kb – IntegerInput
On entry: if
, the number of superdiagonals,
, of the matrix
.
If , the number of subdiagonals, , of the matrix .
Constraint:
.
- 8:
ab[] – doubleInput/Output
-
Note: the dimension,
dim, of the array
ab
must be at least
.
On entry: the upper or lower triangle of the
by
symmetric band matrix
.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of
, depends on the
order and
uplo arguments as follows:
- if and ,
is stored in , for and ; - if and ,
is stored in , for and ; - if and ,
is stored in , for and ; - if and ,
is stored in , for and .
On exit: the contents of
ab are overwritten.
- 9:
pdab – IntegerInput
On entry: the stride separating row or column elements (depending on the value of
order) of the matrix
in the array
ab.
Constraint:
.
- 10:
bb[] – doubleInput/Output
-
Note: the dimension,
dim, of the array
bb
must be at least
.
On entry: the upper or lower triangle of the
by
symmetric positive definite band matrix
.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of
, depends on the
order and
uplo arguments as follows:
- if and ,
is stored in , for and ; - if and ,
is stored in , for and ; - if and ,
is stored in , for and ; - if and ,
is stored in , for and .
On exit: the factor
from the split Cholesky factorization
, as returned by
nag_dpbstf (f08ufc).
- 11:
pdbb – IntegerInput
On entry: the stride separating row or column elements (depending on the value of
order) of the matrix
in the array
bb.
Constraint:
.
- 12:
q[] – doubleOutput
-
Note: the dimension,
dim, of the array
q
must be at least
- when
;
- otherwise.
The
th element of the matrix
is stored in
- when ;
- when .
On exit: if
, the
by
matrix,
used in the reduction of the standard form, i.e.,
, from symmetric banded to tridiagonal form.
If
,
q is not referenced.
- 13:
pdq – IntegerInput
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
q.
Constraints:
- if , ;
- otherwise .
- 14:
vl – doubleInput
- 15:
vu – doubleInput
On entry: if
, the lower and upper bounds of the interval to be searched for eigenvalues.
If
or
,
vl and
vu are not referenced.
Constraint:
if , .
- 16:
il – IntegerInput
- 17:
iu – IntegerInput
On entry: if
, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
If
or
,
il and
iu are not referenced.
Constraints:
- if and , and ;
- if and , .
- 18:
abstol – doubleInput
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
of width less than or equal to
where
is the
machine precision. If
abstol is less than or equal to zero, then
will be used in its place, where
is the tridiagonal matrix obtained by reducing
to tridiagonal form. Eigenvalues will be computed most accurately when
abstol is set to twice the underflow threshold
, not zero. If this function returns with
NE_CONVERGENCE, indicating that some eigenvectors did not converge, try setting
abstol to
. See
Demmel and Kahan (1990).
- 19:
m – Integer *Output
On exit: the total number of eigenvalues found.
.
If , .
If , .
- 20:
w[n] – doubleOutput
On exit: the eigenvalues in ascending order.
- 21:
z[] – doubleOutput
-
Note: the dimension,
dim, of the array
z
must be at least
- when
;
- otherwise.
The
th element of the matrix
is stored in
- when ;
- when .
On exit: if
,
z contains the matrix
of eigenvectors, with the
th column of
holding the eigenvector associated with
. The eigenvectors are normalized so that
.
If
,
z is not referenced.
- 22:
pdz – IntegerInput
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
z.
Constraints:
- if , ;
- otherwise .
- 23:
jfail[] – IntegerOutput
-
Note: the dimension,
dim, of the array
jfail
must be at least
.
On exit: if
, then
- if NE_NOERROR, the first m elements of jfail are zero;
- if NE_CONVERGENCE, jfail contains the indices of the eigenvectors that failed to converge.
If
,
jfail is not referenced.
- 24:
fail – NagError *Input/Output
-
The NAG error argument (see
Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_CONVERGENCE
-
The algorithm failed to converge; eigenvectors did not converge.
- NE_ENUM_INT_2
-
On entry, , and .
Constraint: if , ;
otherwise .
On entry, , and .
Constraint: if , ;
otherwise .
- NE_ENUM_INT_3
-
On entry, , , and .
Constraint: if and , and ;
if and , .
- NE_ENUM_REAL_2
-
On entry, , and .
Constraint: if , .
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
- NE_MAT_NOT_POS_DEF
-
If
, for
, then
nag_dpbstf (f08ufc)
returned
:
is not positive definite. The factorization of
could not be completed and no eigenvalues or eigenvectors were computed.
7 Accuracy
If
is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of
differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of
would suggest. See Section 4.10 of
Anderson et al. (1999) for details of the error bounds.
8 Parallelism and Performance
nag_dsbgvx (f08ubc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dsbgvx (f08ubc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of floating-point operations is proportional to if and , and assuming that , is approximately proportional to if . Otherwise the number of floating-point operations depends upon the number of eigenvectors computed.
The complex analogue of this function is
nag_zhbgvx (f08upc).
10 Example
This example finds the eigenvalues in the half-open interval
, and corresponding eigenvectors, of the generalized band symmetric eigenproblem
, where
10.1 Program Text
Program Text (f08ubce.c)
10.2 Program Data
Program Data (f08ubce.d)
10.3 Program Results
Program Results (f08ubce.r)