nag_zungbr (f08ktc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zungbr (f08ktc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zungbr (f08ktc) generates one of the complex unitary matrices Q or PH which were determined by nag_zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2  Specification

#include <nag.h>
#include <nagf08.h>
void  nag_zungbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n, Integer k, Complex a[], Integer pda, const Complex tau[], NagError *fail)

3  Description

nag_zungbr (f08ktc) is intended to be used after a call to nag_zgebrd (f08ksc), which reduces a complex rectangular matrix A to real bidiagonal form B by a unitary transformation: A=QBPH. nag_zgebrd (f08ksc) represents the matrices Q and PH as products of elementary reflectors.
This function may be used to generate Q or PH explicitly as square matrices, or in some cases just the leading columns of Q or the leading rows of PH.
The various possibilities are specified by the arguments vect, m, n and k. The appropriate values to cover the most likely cases are as follows (assuming that A was an m by n matrix):
1. To form the full m by m matrix Q:
nag_zungbr(order,Nag_FormQ,m,m,n,...)
(note that the array a must have at least m columns).
2. If m>n, to form the n leading columns of Q:
nag_zungbr(order,Nag_FormQ,m,n,n,...)
3. To form the full n by n matrix PH:
nag_zungbr(order,Nag_FormP,n,n,m,...)
(note that the array a must have at least n rows).
4. If m<n, to form the m leading rows of PH:
nag_zungbr(order,Nag_FormP,m,n,m,...)

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     vectNag_VectTypeInput
On entry: indicates whether the unitary matrix Q or PH is generated.
vect=Nag_FormQ
Q is generated.
vect=Nag_FormP
PH is generated.
Constraint: vect=Nag_FormQ or Nag_FormP.
3:     mIntegerInput
On entry: m, the number of rows of the unitary matrix Q or PH to be returned.
Constraint: m0.
4:     nIntegerInput
On entry: n, the number of columns of the unitary matrix Q or PH to be returned.
Constraints:
  • n0;
  • if vect=Nag_FormQ and m>k, mnk;
  • if vect=Nag_FormQ and mk, m=n;
  • if vect=Nag_FormP and n>k, nmk;
  • if vect=Nag_FormP and nk, n=m.
5:     kIntegerInput
On entry: if vect=Nag_FormQ, the number of columns in the original matrix A.
If vect=Nag_FormP, the number of rows in the original matrix A.
Constraint: k0.
6:     a[dim]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least
  • max1,pda×n when order=Nag_ColMajor;
  • max1,m×pda when order=Nag_RowMajor.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgebrd (f08ksc).
On exit: the unitary matrix Q or PH, or the leading rows or columns thereof, as specified by vectm and n.
If order=Nag_ColMajor, the i,jth element of the matrix is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, the i,jth element of the matrix is stored in a[i-1×pda+j-1].
7:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,m.
8:     tau[dim]const ComplexInput
Note: the dimension, dim, of the array tau must be at least
  • max1,minm,k when vect=Nag_FormQ;
  • max1,minn,k when vect=Nag_FormP.
On entry: further details of the elementary reflectors, as returned by nag_zgebrd (f08ksc) in its argument tauq if vect=Nag_FormQ, or in its argument taup if vect=Nag_FormP.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_ENUM_INT_3
On entry, vect=value, m=value, n=value and k=value.
Constraint: n0 and
if vect=Nag_FormQ and m>k, mnk;
if vect=Nag_FormQ and mk, m=n;
if vect=Nag_FormP and n>k, nmk;
if vect=Nag_FormP and nk, n=m.
NE_INT
On entry, k=value.
Constraint: k0.
On entry, m=value.
Constraint: m0.
On entry, pda=value.
Constraint: pda>0.
NE_INT_2
On entry, pda=value and m=value.
Constraint: pdamax1,m.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7  Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
E2 = Oε ,
where ε is the machine precision. A similar statement holds for the computed matrix PH.

8  Parallelism and Performance

nag_zungbr (f08ktc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zungbr (f08ktc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The total number of real floating-point operations for the cases listed in Section 3 are approximately as follows:
1. To form the whole of Q:
  • 163n3m2-3mn+n2 if m>n,
  • 163m3 if mn;
2. To form the n leading columns of Q when m>n:
  • 83n23m-n;
3. To form the whole of PH:
  • 163n3 if mn,
  • 163m33n2-3mn+m2 if m<n;
4. To form the m leading rows of PH when m<n:
  • 83m23n-m.
The real analogue of this function is nag_dorgbr (f08kfc).

10  Example

For this function two examples are presented, both of which involve computing the singular value decomposition of a matrix A, where
A = 0.96-0.81i -0.03+0.96i -0.91+2.06i -0.05+0.41i -0.98+1.98i -1.20+0.19i -0.66+0.42i -0.81+0.56i 0.62-0.46i 1.01+0.02i 0.63-0.17i -1.11+0.60i -0.37+0.38i 0.19-0.54i -0.98-0.36i 0.22-0.20i 0.83+0.51i 0.20+0.01i -0.17-0.46i 1.47+1.59i 1.08-0.28i 0.20-0.12i -0.07+1.23i 0.26+0.26i
in the first example and
A = 0.28-0.36i 0.50-0.86i -0.77-0.48i 1.58+0.66i -0.50-1.10i -1.21+0.76i -0.32-0.24i -0.27-1.15i 0.36-0.51i -0.07+1.33i -0.75+0.47i -0.08+1.01i
in the second. A must first be reduced to tridiagonal form by nag_zgebrd (f08ksc). The program then calls nag_zungbr (f08ktc) twice to form Q and PH, and passes these matrices to nag_zbdsqr (f08msc), which computes the singular value decomposition of A.

10.1  Program Text

Program Text (f08ktce.c)

10.2  Program Data

Program Data (f08ktce.d)

10.3  Program Results

Program Results (f08ktce.r)


nag_zungbr (f08ktc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014