f01 Chapter Contents
f01 Chapter Introduction (PDF version)
NAG Library Manual

NAG Library Chapter Introduction

f01 – Matrix Operations, Including Inversion

+ Contents

1  Scope of the Chapter

This chapter provides facilities for three types of problem:
(i) Matrix Inversion
(ii) Matrix Factorizations
(iii) Matrix Functions
These problems are discussed separately in Section 2.1, Section 2.2 and Section 2.3.

2  Background to the Problems

2.1  Matrix Inversion

(i) Nonsingular square matrices of order n.
If A, a square matrix of order n, is nonsingular (has rank n), then its inverse X exists and satisfies the equations AX=XA=I (the identity or unit matrix).
It is worth noting that if AX-I=R, so that R is the ‘residual’ matrix, then a bound on the relative error is given by R, i.e.,
X-A-1 A-1 R.
(ii) General real rectangular matrices.
A real matrix A has no inverse if it is square (n by n) and singular (has rank <n), or if it is of shape (m by n) with mn, but there is a Generalized or Pseudo-inverse A+ which satisfies the equations
AA+A=A,  A+AA+=A+,  AA+T=AA+,  A+AT=A+A
(which of course are also satisfied by the inverse X of A if A is square and nonsingular).
(a) if mn and rankA=n then A can be factorized using a QR factorization, given by
A=Q R 0 ,
where Q is an m by m orthogonal matrix and R is an n by n, nonsingular, upper triangular matrix. The pseudo-inverse of A is then given by
A+=R-1Q~T,
where Q~ consists of the first n columns of Q.
(b) if mn and rankA=m then A can be factorized using an RQ factorization, given by
A=R0QT
where Q is an n by n orthogonal matrix and R is an m by m, nonsingular, upper triangular matrix. The pseudo-inverse of A is then given by
A+ = Q~R-1 ,
where Q~ consists of the first m columns of Q.
(c) if mn and rankA=rn then A can be factorized using a QR factorization, with column interchanges, as
A=Q R 0 PT,
where Q is an m by m orthogonal matrix, R is an r by n upper trapezoidal matrix and P is an n by n permutation matrix. The pseudo-inverse of A is then given by
A+=PRTRRT-1Q~T,
where Q~ consists of the first r columns of Q.
(d) if rankA=rk=minm,n, then A can be factorized as the singular value decomposition
A=UΣVT,
where U is an m by m orthogonal matrix, V is an n by n orthogonal matrix and Σ is an m by n diagonal matrix with non-negative diagonal elements σ. The first k columns of U and V are the left- and right-hand singular vectors of A respectively and the k diagonal elements of Σ are the singular values of A. Σ may be chosen so that
σ1σ2σk0
and in this case if rankA=r then
σ1σ2σr>0,  σr+1==σk=0.
If U~ and V~ consist of the first r columns of U and V respectively and Σ~ is an r by r diagonal matrix with diagonal elements σ1,σ2,,σr then A is given by
A=U~Σ~V~T
and the pseudo-inverse of A is given by
A+=V~Σ~-1U~T.
Notice that
ATA=VΣTΣVT
which is the classical eigenvalue (spectral) factorization of ATA.
(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of ‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value decomposition of A is
A=UΣVH,
where U and V are unitary, VH the conjugate transpose of V and Σ is as in (d) above.

2.2  Matrix Factorizations

The functions in this section perform matrix factorizations which are required for the solution of systems of linear equations with various special structures. A few functions which perform associated computations are also included.
Other functions for matrix factorizations are to be found in Chapters f07f08 and f11.
This section also contains a few functions associated with eigenvalue problems (see Chapter f02). (Historical note: this section used to contain many more such functions, but they have now been superseded by functions in Chapter f08.)

2.3  Matrix Functions

Given a square matrix A, the matrix function fA is a matrix with the same dimensions as A which provides a generalization of the scalar function f.
If A has a full set of eigenvectors V then A can be factorized as
A = V D V-1 ,
where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A. fA is given by
fA = V fD V-1 ,
where fD is the diagonal matrix whose ith diagonal element is fdi.
In general, A may not have a full set of eigenvectors. The matrix function can then be defined via a Cauchy integral. For An×n,
fA = 1 2π i Γ fz zI-A-1 dz ,
where Γ is a closed contour surrounding the eigenvalues of A, and f is analytic within Γ.
Some matrix functions are defined implicitly. A matrix logarithm is a solution X to the equation
eX=A .
In general X is not unique, but if A has no eigenvalues on the closed negative real line then a unique principal logarithm exists whose eigenvalues have imaginary part between π and -π. Similarly, a matrix square root is a solution X to the equation
X2=A .
If A has no eigenvalues on the closed negative real line then a unique principal square root exists with eigenvalues in the right half-plane. If A has a vanishing eigenvalue then logA cannot be computed. If the vanishing eigenvalue is defective (its algebraic multiplicity exceeds its geometric multiplicity, or equivalently it occurs in a Jordan block of size greater than 1) then the square root cannot be computed. If the vanishing eigenvalue is semisimple (its algebraic and geometric multiplicities are equal, or equivalently it occurs only in Jordan blocks of size 1) then a square root can be computed.
Algorithms for computing matrix functions are usually tailored to a specific function. Currently Chapter f01 contains routines for calculating the exponential, logarithm, sine, cosine, sinh, cosh, square root and general real power of both real and complex matrices. In addition there are routines to compute a general function of real symmetric and complex Hermitian matrices and a general function of general real and complex matrices.
The Fréchet derivative of a matrix function fA in the direction of the matrix E is the linear function mapping E to LfA,E such that
fA+E - fA - LfA,E = OE .
The Fréchet derivative measures the first-order effect on fA of perturbations in A. Chapter f01 contains functions for calculating the Fréchet derivative of the exponential, logarithm and real powers of both real and complex matrices.
The condition number of a matrix function is a measure of its sensitivity to perturbations in the data. The absolute condition number measures these perturbations in an absolute sense, and is defined by
condabs f,A := lim ε0 sup E0 fA+E - fA ε .
The relative condition number, which is usually of more interest, measures these perturbations in a relative sense, and is defined by
condrel f,A = condabs f,A A fA .
The absolute and relative condition numbers can be expressed in terms of the norm of the Fréchet derivative by
condabs f,A = max E0 LA,E E ,
condrel f,A = A fA max E0 LA,E E .
Chapter f01 contains routines for calculating the condition number of the matrix exponential, logarithm, sine, cosine, sinh, cosh, square root and general real power of both real and complex matrices. It also contains routines for estimating the condition number of a general function of a real or complex matrix.

3  Recommendations on Choice and Use of Available Functions

3.1  Matrix Inversion

Note:  before using any function for matrix inversion, consider carefully whether it is really needed.
Although the solution of a set of linear equations Ax=b can be written as x=A-1b, the solution should never be computed by first inverting A and then computing A-1b; the functions in Chapters f04 or f07 should always be used to solve such sets of equations directly; they are faster in execution, and numerically more stable and accurate. Similar remarks apply to the solution of least squares problems which again should be solved by using the functions in Chapters f04 and f08 rather than by computing a pseudo-inverse.
(a) Nonsingular square matrices of order n 
This chapter describes techniques for inverting a general real matrix A and matrices which are positive definite (have all eigenvalues positive) and are either real and symmetric or complex and Hermitian. It is wasteful and uneconomical not to use the appropriate function when a matrix is known to have one of these special forms. A general function must be used when the matrix is not known to be positive definite. In most functions the inverse is computed by solving the linear equations Axi=ei, for i=1,2,,n, where ei is the ith column of the identity matrix.
The residual matrix R=AX-I, where X is a computed inverse of A, conveys useful information. Firstly R is a bound on the relative error in X and secondly R<12  guarantees the convergence of the iterative process in the ‘corrected’ inverse functions.
The decision trees for inversion show which functions in Chapter f07 should be used for the inversion of other special types of matrices not treated in the chapter.
(b) General real rectangular matrices
For real matrices nag_dgeqrf (f08aec) returns the QR factorization of the matrix and nag_dgeqp3 (f08bfc) returns the QR factorization with column interchanges. The corresponding complex functions are nag_zgeqrf (f08asc) and nag_zgeqp3 (f08btc) respectively. Functions are also provided to form the orthogonal matrices and transform by the orthogonal matrices following the use of the above functions.
nag_dgesvd (f08kbc) and nag_zgesvd (f08kpc) compute the singular value decomposition as described in Section 2 for real and complex matrices respectively. If A has rank rk=minm,n then the k-r smallest singular values will be negligible and the pseudo-inverse of A can be obtained as A+=VΣ-1UT as described in Section 2. If the rank of A is not known in advance it can be estimated from the singular values (see Section 2.4 in the f04 Chapter Introduction). For large sparse matrices, leading terms in the singular value decomposition can be computed using functions from Chapter f12.

3.2  Matrix Factorizations

Each of these functions serves a special purpose required for the solution of sets of simultaneous linear equations or the eigenvalue problem. For further details you should consult Sections 3 or 4 in the f02 Chapter Introduction or Sections 3 or 4 in the f04 Chapter Introduction.
nag_sparse_nsym_fac (f11dac) is provided for factorizing general real sparse matrices. A more recent algorithm for the same problem is available through nag_superlu_lu_factorize (f11mec). For factorizing real symmetric positive definite sparse matrices, see nag_sparse_sym_chol_fac (f11jac). These functions should be used only when A is not banded and when the total number of nonzero elements is less than 10% of the total number of elements. In all other cases either the band functions or the general functions should be used.

3.3  Matrix Functions

nag_real_gen_matrix_exp (f01ecc) and nag_matop_complex_gen_matrix_exp (f01fcc) compute the matrix exponential, eA, of a real and complex square matrix A respectively. If estimates of the condition number of the matrix exponential are required then nag_matop_real_gen_matrix_cond_exp (f01jgc) and nag_matop_complex_gen_matrix_cond_exp (f01kgc) should be used. If Fréchet derivatives are required then nag_matop_real_gen_matrix_frcht_exp (f01jhc) and nag_matop_complex_gen_matrix_frcht_exp (f01khc) should be used.
nag_real_symm_matrix_exp (f01edc) and nag_matop_complex_herm_matrix_exp (f01fdc) compute the matrix exponential, eA, of a real symmetric and complex Hermitian matrix respectively. If the matrix is real symmetric, or complex Hermitian then it is recommended that nag_real_symm_matrix_exp (f01edc), or nag_matop_complex_herm_matrix_exp (f01fdc) be used as they are more efficient and, in general, more accurate than nag_real_gen_matrix_exp (f01ecc) and nag_matop_complex_gen_matrix_exp (f01fcc).
nag_matop_real_gen_matrix_log (f01ejc) and nag_matop_complex_gen_matrix_log (f01fjc) compute the principal matrix logarithm, logA, of a real and complex square matrix A respectively. If estimates of the condition number of the matrix logarithm are required then nag_matop_real_gen_matrix_cond_log (f01jjc) and nag_matop_complex_gen_matrix_cond_log (f01kjc) should be used. If Fréchet derivatives are required then nag_matop_real_gen_matrix_frcht_log (f01jkc) and nag_matop_complex_gen_matrix_frcht_log (f01kkc) should be used.
nag_matop_real_gen_matrix_fun_std (f01ekc) and nag_matop_complex_gen_matrix_fun_std (f01fkc) compute the matrix exponential, sine, cosine, sinh or cosh of a real and complex square matrix A respectively. If the matrix exponential is required then it is recommended that nag_real_gen_matrix_exp (f01ecc) or nag_matop_complex_gen_matrix_exp (f01fcc) be used as they are, in general, more accurate than nag_matop_real_gen_matrix_fun_std (f01ekc) and nag_matop_complex_gen_matrix_fun_std (f01fkc). If estimates of the condition number of the matrix function are required then nag_matop_real_gen_matrix_cond_std (f01jac) and nag_matop_complex_gen_matrix_cond_std (f01kac) should be used.
nag_matop_real_gen_matrix_fun_num (f01elc) and nag_matop_real_gen_matrix_fun_usd (f01emc) compute the matrix function, fA, of a real square matrix. nag_matop_complex_gen_matrix_fun_num (f01flc) and nag_matop_complex_gen_matrix_fun_usd (f01fmc) compute the matrix function of a complex square matrix. The derivatives of f are required for these computations. nag_matop_real_gen_matrix_fun_num (f01elc) and nag_matop_complex_gen_matrix_fun_num (f01flc) use numerical differentiation to obtain the derivatives of f. nag_matop_real_gen_matrix_fun_usd (f01emc) and nag_matop_complex_gen_matrix_fun_usd (f01fmc) use derivatives you have supplied. If estimates of the condition number are required but you are not supplying derivatives then nag_matop_real_gen_matrix_cond_num (f01jbc) and nag_matop_complex_gen_matrix_cond_num (f01kbc) should be used. If estimates of the condition number of the matrix function are required and you are supplying derivatives of f, then nag_matop_real_gen_matrix_cond_usd (f01jcc) and nag_matop_complex_gen_matrix_cond_usd (f01kcc) should be used.
If the matrix A is real symmetric or complex Hermitian then it is recommended that to compute the matrix function, fA, nag_matop_real_symm_matrix_fun (f01efc) and nag_matop_complex_herm_matrix_fun (f01ffc) are used respectively as they are more efficient and, in general, more accurate than nag_matop_real_gen_matrix_fun_num (f01elc)nag_matop_real_gen_matrix_fun_usd (f01emc)nag_matop_complex_gen_matrix_fun_num (f01flc) and nag_matop_complex_gen_matrix_fun_usd (f01fmc).
nag_matop_real_gen_matrix_actexp (f01gac) and nag_matop_complex_gen_matrix_actexp (f01hac) compute the matrix function etAB for explicitly stored dense real and complex matrices A and B respectively while nag_matop_real_gen_matrix_actexp_rcomm (f01gbc) and nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) compute the same using reverse communication. In the latter case, control is returned to you. You should calculate any required matrix-matrix products and then call the function again.
nag_matop_real_gen_matrix_sqrt (f01enc) and nag_matop_complex_gen_matrix_sqrt (f01fnc) compute the principal square root A1/2 of a real and complex square matrix A respectively. If A is complex and upper triangular then nag_matop_complex_tri_matrix_sqrt (f01fpc) should be used. If A is real and upper quasi-triangular then nag_matop_real_tri_matrix_sqrt (f01epc) should be used. If estimates of the condition number of the matrix square root are required then nag_matop_real_gen_matrix_cond_sqrt (f01jdc) and nag_matop_complex_gen_matrix_cond_sqrt (f01kdc) should be used.
nag_matop_real_gen_matrix_pow (f01eqc) and nag_matop_complex_gen_matrix_pow (f01fqc) compute the matrix power Ap, where p, of real and complex matrices respectively. If estimates of the condition number of the matrix power are required then nag_matop_real_gen_matrix_cond_pow (f01jec) and nag_matop_complex_gen_matrix_cond_pow (f01kec) should be used. If Fréchet derivatives are required then nag_matop_real_gen_matrix_frcht_pow (f01jfc) and nag_matop_complex_gen_matrix_frcht_pow (f01kfc) should be used.

4  Decision Trees

The decision trees show the functions in this chapter and in Chapter f07 and Chapter f08 that should be used for inverting matrices of various types. They also show which function should be used to calculate various matrix functions.
(i) Matrix Inversion:

Tree 1

Is A an n by n matrix of rank n? _
yes
Is A a real matrix? _
yes
see Tree 2
| no
|
| see Tree 3
no
|
see Tree 4

Tree 2: Inverse of a real n by n matrix of full rank

Is A a band matrix? _
yes
See Note 1.
no
|
Is A symmetric? _
yes
Is A positive definite? _
yes
Is one triangle of A stored as a linear array? _
yes
f07gdc and f07gjc
| | no
|
| | f07fdc and f07fjc
| no
|
| Is one triangle of A stored as a linear array? _
yes
f07pdc and f07pjc
| no
|
| f07mdc and f07mjc
no
|
Is A triangular? _
yes
Is A stored as a linear array? _
yes
f07ujc
| no
|
| f07tjc
no
|
f07adc and f07ajc

Tree 3: Inverse of a complex n by n matrix of full rank

Is A a band matrix? _
yes
See Note 1.
no
|
Is A Hermitian? _
yes
Is A positive definite? _
yes
Is one triangle of A stored as a linear array? _
yes
f07grc and f07gwc
| | no
|
| | f07frc and f07fwc
| no
|
| Is one triangle A stored as a linear array? _
yes
f07prc and f07pwc
| no
|
| f07mrc and f07mwc
no
|
Is A symmetric? _
yes
Is one triangle of A stored as a linear array? _
yes
f07qrc and f07qwc
| no
|
| f07nrc and f07nwc
no
|
Is A triangular? _
yes
Is A stored as a linear array? _
yes
f07uwc
| no
|
| f07twc
no
|
f07anc or f07arc and f07awc

Tree 4: Pseudo-inverses

Is A a complex matrix? _
yes
Is A of full rank? _
yes
Is A an m by n matrix with m<n? _
yes
f08avc and f08awc or f08axc
| | no
|
| | f08asc and f08auc or f08atc
| no
|
| f08kpc
no
|
Is A of full rank? _
yes
Is A an m by n matrix with m<n? _
yes
f08ahc and f08ajc or f08akc
| no
|
| f08aec and f08agc or f08afc
no
|
f08kbc
Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no functions are provided specifically for finding such an inverse. The matrix must either be treated as a full matrix, or the equations AX=B must be solved, where B has been initialized to the identity matrix I. In the latter case, see the decision trees in Section 4 in the f04 Chapter Introduction.
Note 2: by ‘guaranteed accuracy’ we mean that the accuracy of the inverse is improved by use of the iterative refinement technique using additional precision.
(ii) Matrix Factorizations: see the decision trees in Section 4 in the f02 and f04 Chapter Introductions.
(iii) Matrix Functions:

Tree 5: Matrix functions fA of an n by n real matrix A 

Is etAB required? _
yes
Is A stored in dense format? _
yes
f01gac
| no
|
| f01gbc
no
|
Is A real symmetric? _
yes
Is eA required? _
yes
f01edc
| no
|
| f01efc
no
|
Is cosA or coshA or sinA or sinhA required? _
yes
Is the condition number of the matrix function required? _
yes
f01jac
| no
|
| f01ekc
no
|
Is logA required? _
yes
Is the condition number of the matrix logarithm required? _
yes
f01jjc
| no
|
| Is the Fréchet derivative of the matrix logarithm required? _
yes
f01jkc
| no
|
| f01ejc
no
|
Is expA required? _
yes
Is the condition number of the matrix exponential required? _
yes
f01jgc
| no
|
| Is the Fréchet derivative of the matrix exponential required? _
yes
f01jhc
| no
|
| f01ecc
no
|
Is A1/2 required? _
yes
Is the condition number of the matrix square root required? _
yes
f01jdc
| no
|
| Is the matrix upper quasi-triangular? _
yes
f01epc
| no
|
| f01enc
no
|
Is Ap required? _
yes
Is the condition number of the matrix power required? _
yes
f01jec
| no
|
| Is the Fréchet derivative of the matrix power required? _
yes
f01jfc
| no
|
| f01eqc
no
|
fA will be computed. Will derivatives of f be supplied by the user? _
yes
Is the condition number of the matrix function required? _
yes
f01jcc
| no
|
| f01emc
no
|
Is the condition number of the matrix function required? _
yes
f01jbc
no
|
f01elc

Tree 6: Matrix functions fA of an n by n complex matrix A 

Is etAB required? _
yes
Is A stored in dense format? _
yes
f01hac
| no
|
| f01hbc
no
|
Is A complex Hermitian? _
yes
Is eA required? _
yes
f01fdc
| no
|
| f01ffc
no
|
Is cosA or coshA or sinA or sinhA required? _
yes
Is the condition number of the matrix function required? _
yes
f01kac
| no
|
| f01fkc
no
|
Is logA required? _
yes
Is the condition number of the matrix logarithm required? _
yes
f01kjc
| no
|
| Is the Fréchet derivative of the matrix logarithm required? _
yes
f01kkc
| no
|
| f01fjc
no
|
Is expA required? _
yes
Is the condition number of the matrix exponential required? _
yes
f01kgc
| no
|
| Is the Fréchet derivative of the matrix exponential required? _
yes
f01khc
| no
|
| f01fcc
no
|
Is A1/2 required? _
yes
Is the condition number of the matrix square root required? _
yes
f01kdc
| no
|
| Is the matrix upper triangular? _
yes
f01fpc
| no
|
| f01fnc
no
|
Is Ap required? _
yes
Is the condition number of the matrix power required? _
yes
f01kec
| no
|
| Is the Fréchet derivative of the matrix power required? _
yes
f01kfc
| no
|
| f01fqc
no
|
fA will be computed. Will derivatives of f be supplied by the user? _
yes
Is the condition number of the matrix function required? _
yes
f01kcc
| no
|
| f01fmc
no
|
Is the condition number of the matrix function required? _
yes
f01kbc
no
|
f01flc

5  Functionality Index

Action of the matrix exponential on a complex matrix nag_matop_complex_gen_matrix_actexp (f01hac)
Action of the matrix exponential on a complex matrix (reverse communication) nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc)
Action of the matrix exponential on a real matrix nag_matop_real_gen_matrix_actexp (f01gac)
Action of the matrix exponential on a real matrix (reverse communication) nag_matop_real_gen_matrix_actexp_rcomm (f01gbc)
Matrix function, 
    complex Hermitian n by n matrix, 
        matrix exponential nag_matop_complex_herm_matrix_exp (f01fdc)
        matrix function nag_matop_complex_herm_matrix_fun (f01ffc)
    complex n by n matrix, 
        condition number for a matrix exponential nag_matop_complex_gen_matrix_cond_exp (f01kgc)
        condition number for a matrix exponential, logarithm, sine, cosine, sinh or cosh nag_matop_complex_gen_matrix_cond_std (f01kac)
        condition number for a matrix function, using numerical differentiation nag_matop_complex_gen_matrix_cond_num (f01kbc)
        condition number for a matrix function, using user-supplied derivatives nag_matop_complex_gen_matrix_cond_usd (f01kcc)
        condition number for a matrix logarithm nag_matop_complex_gen_matrix_cond_log (f01kjc)
        condition number for a matrix power nag_matop_complex_gen_matrix_cond_pow (f01kec)
        condition number for the matrix square root, logarithm, sine, cosine, sinh or cosh nag_matop_complex_gen_matrix_cond_sqrt (f01kdc)
        Fréchet derivative 
            matrix exponential nag_matop_complex_gen_matrix_frcht_exp (f01khc)
            matrix logarithm nag_matop_complex_gen_matrix_frcht_log (f01kkc)
            matrix power nag_matop_complex_gen_matrix_frcht_pow (f01kfc)
        general power 
            matrix nag_matop_complex_gen_matrix_pow (f01fqc)
        matrix exponential nag_matop_complex_gen_matrix_exp (f01fcc)
        matrix exponential, sine, cosine, sinh or cosh nag_matop_complex_gen_matrix_fun_std (f01fkc)
        matrix function, using numerical differentiation nag_matop_complex_gen_matrix_fun_num (f01flc)
        matrix function, using user-supplied derivatives nag_matop_complex_gen_matrix_fun_usd (f01fmc)
        matrix logarithm nag_matop_complex_gen_matrix_log (f01fjc)
        matrix square root nag_matop_complex_gen_matrix_sqrt (f01fnc)
        upper triangular 
            matrix square root nag_matop_complex_tri_matrix_sqrt (f01fpc)
    real n by n matrix, 
        condition number for a matrix exponential nag_matop_real_gen_matrix_cond_exp (f01jgc)
        condition number for a matrix function, using numerical differentiation nag_matop_real_gen_matrix_cond_num (f01jbc)
        condition number for a matrix function, using user-supplied derivatives nag_matop_real_gen_matrix_cond_usd (f01jcc)
        condition number for a matrix logarithm nag_matop_real_gen_matrix_cond_log (f01jjc)
        condition number for a matrix power nag_matop_real_gen_matrix_cond_pow (f01jec)
        condition number for the matrix exponential, logarithm, sine, cosine, sinh or cosh nag_matop_real_gen_matrix_cond_std (f01jac)
        condition number for the matrix square root, logarithm, sine, cosine, sinh or cosh nag_matop_real_gen_matrix_cond_sqrt (f01jdc)
        Fréchet derivative 
            matrix exponential nag_matop_real_gen_matrix_frcht_exp (f01jhc)
            matrix logarithm nag_matop_real_gen_matrix_frcht_log (f01jkc)
            matrix power nag_matop_real_gen_matrix_frcht_pow (f01jfc)
        general power 
            matrix exponential nag_matop_real_gen_matrix_pow (f01eqc)
        matrix exponential nag_real_gen_matrix_exp (f01ecc)
        matrix exponential, sine, cosine, sinh or cosh nag_matop_real_gen_matrix_fun_std (f01ekc)
        matrix function, using numerical differentiation nag_matop_real_gen_matrix_fun_num (f01elc)
        matrix function, using user-supplied derivatives nag_matop_real_gen_matrix_fun_usd (f01emc)
        matrix logarithm nag_matop_real_gen_matrix_log (f01ejc)
        matrix square root nag_matop_real_gen_matrix_sqrt (f01enc)
        upper quasi-triangular 
            matrix square root nag_matop_real_tri_matrix_sqrt (f01epc)
    real symmetric n by n matrix, 
        matrix exponential nag_real_symm_matrix_exp (f01edc)
        matrix function nag_matop_real_symm_matrix_fun (f01efc)
Matrix Transformations, 
    real band symmetric positive definite matrix, 
        variable bandwidth, LDLT factorization nag_real_cholesky_skyline (f01mcc)

6  Auxiliary Functions Associated with Library Function Arguments

None.

7  Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are scheduled for withdrawal at one of the next two marks.
Withdrawn
Function
Mark of
Withdrawal

Replacement Function(s)
nag_complex_cholesky (f01bnc)25nag_zpotrf (f07frc)
nag_real_qr (f01qcc)25nag_dgeqrf (f08aec)
nag_real_apply_q (f01qdc)25nag_dormqr (f08agc)
nag_real_form_q (f01qec)25nag_dorgqr (f08afc)
nag_complex_qr (f01rcc)25nag_zgeqrf (f08asc)
nag_complex_apply_q (f01rdc)25nag_zunmqr (f08auc)
nag_complex_form_q (f01rec)25nag_zungqr (f08atc)

8  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford
Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in Numerical Analysis (ed D A H Jacobs) Academic Press
Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–Verlag

f01 Chapter Contents
f01 Chapter Introduction (PDF version)
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014