nag_sum_fft_complex_2d (c06puc) (PDF version)
c06 Chapter Contents
c06 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_sum_fft_complex_2d (c06puc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_sum_fft_complex_2d (c06puc) computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values (using complex data type).

2  Specification

#include <nag.h>
#include <nagc06.h>
void  nag_sum_fft_complex_2d (Nag_TransformDirection direct, Integer m, Integer n, Complex x[], NagError *fail)

3  Description

nag_sum_fft_complex_2d (c06puc) computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values z j1 j2 , for j1=0,1,,m-1 and j2=0,1,,n-1.
The discrete Fourier transform is here defined by
z^ k1 k2 = 1mn j1=0 m-1 j2=0 n-1 z j1 j2 × exp ±2πi j1 k1 m + j2 k2 n ,
where k1=0,1,,m-1  and k2=0,1,,n-1 .
(Note the scale factor of 1mn  in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required.
A call of nag_sum_fft_complex_2d (c06puc) with direct=Nag_ForwardTransform followed by a call with direct=Nag_BackwardTransform will restore the original data.
This function performs multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4  References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5  Arguments

1:     directNag_TransformDirectionInput
On entry: if the forward transform as defined in Section 3 is to be computed, then direct must be set equal to Nag_ForwardTransform.
If the backward transform is to be computed then direct must be set equal to Nag_BackwardTransform.
Constraint: direct=Nag_ForwardTransform or Nag_BackwardTransform.
2:     mIntegerInput
On entry: m, the first dimension of the transform.
Constraint: m1.
3:     nIntegerInput
On entry: n, the second dimension of the transform.
Constraint: n1.
4:     x[ m×n ]ComplexInput/Output
On entry: the complex data values. x[m×j2+j1] must contain z j1 j2 , for j1=0,1,,m-1 and j2=0,1,,n-1.
On exit: the corresponding elements of the computed transform.
5:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
value is an invalid value of direct.
NE_INT
On entry, m=value.
Constraint: m1.
On entry, n=value.
Constraint: n1.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7  Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8  Parallelism and Performance

nag_sum_fft_complex_2d (c06puc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_sum_fft_complex_2d (c06puc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The time taken is approximately proportional to mn × logmn , but also depends on the factorization of the individual dimensions m and n. nag_sum_fft_complex_2d (c06puc) is faster if the only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2. This function internally allocates a workspace of mn+n+m+30 Complex values.

10  Example

This example reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

10.1  Program Text

Program Text (c06puce.c)

10.2  Program Data

Program Data (c06puce.d)

10.3  Program Results

Program Results (c06puce.r)


nag_sum_fft_complex_2d (c06puc) (PDF version)
c06 Chapter Contents
c06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014