NAG Library Function Document
nag_fft_multiple_qtr_sine (c06hcc)
1 Purpose
nag_fft_multiple_qtr_sine (c06hcc) computes the discrete quarter-wave Fourier sine transforms of sequences of real data values.
2 Specification
#include <nag.h> |
#include <nagc06.h> |
void |
nag_fft_multiple_qtr_sine (Nag_TransformDirection direct,
Integer m,
Integer n,
double x[],
const double trig[],
NagError *fail) |
|
3 Description
Given
sequences of
real data values
, for
and
, this function simultaneously calculates the quarter-wave Fourier sine transforms of all the sequences defined by
or its inverse
for
and
.
(Note the scale factor in this definition.)
A call of the function with
followed by a call with
will restore the original data (but see
Section 9).
The transform calculated by this function can be used to solve Poisson's equation when the solution is specified at the left boundary, and the derivative of the solution is specified at the right boundary (
Swarztrauber (1977)).
The function uses a variant of the fast Fourier transform (FFT) algorithm (
Brigham (1974)) known as the Stockham self-sorting algorithm, described in
Temperton (1983), together with pre- and post-processing stages described in
Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4, 5 and 6.
4 References
Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501
Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83 Academic Press
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
5 Arguments
- 1:
direct – Nag_TransformDirectionInput
On entry: if the forward transform as defined in
Section 3 is to be computed, then
direct must be set equal to
. If the backward transform is to be computed, that is the inverse, then
direct must be set equal to
.
Constraint:
or .
- 2:
m – IntegerInput
-
On entry: the number of sequences to be transformed, .
Constraint:
.
- 3:
n – IntegerInput
-
On entry: the number of real values in each sequence, .
Constraint:
.
- 4:
x[] – doubleInput/Output
-
On entry: the
data sequences stored in
x consecutively. If the data values of the
th sequence to be transformed are denoted by
, for
and
, then the first
elements of the array
x must contain the values
On exit: the quarter-wave sine transforms stored consecutively.
- 5:
trig[] – const doubleInput
-
On entry: trigonometric coefficients as returned by a call of
nag_fft_init_trig (c06gzc). nag_fft_multiple_qtr_sine (c06hcc) makes a simple check to ensure that
trig has been initialized and that the initialization is compatible with the value of
n.
- 6:
fail – NagError *Input/Output
-
The NAG error argument (see
Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
- NE_BAD_PARAM
-
On entry, argument
direct had an illegal value.
- NE_C06_NOT_TRIG
-
Value of
n and
trig array are incompatible or
trig array not initialized.
- NE_INT_ARG_LT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
7 Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).
8 Parallelism and Performance
Not applicable.
The time taken is approximately proportional to , but also depends on the factors of . The function is fastest if the only prime factors of are 2, 3 and 5, and is particularly slow if is a large prime, or has large prime factors.
10 Example
This program reads in sequences of real data values and prints their quarter-wave sine transforms as computed by nag_fft_multiple_qtr_sine (c06hcc) with . It then calls nag_fft_multiple_qtr_sine (c06hcc) again with and prints the results which may be compared with the original data.
10.1 Program Text
Program Text (c06hcce.c)
10.2 Program Data
Program Data (c06hcce.d)
10.3 Program Results
Program Results (c06hcce.r)