D02 — Ordinary Differential d02ue

NAG Toolbox

nag ode bvp ps lin_solve (d02ue)

1 Purpose

nag_ode bvp ps_lin solve (d02ue) finds the solution of a linear constant coefficient boundary value
problem by using the Chebyshev integration formulation on a Chebyshev Gauss—Lobatto grid.

2 Syntax

[bmat, f, uc, resid, ifail] = nag_ode_bvp_ps_lin_solve(n, a, b, ¢, bmat, y, bvec,
f, 'm’, m)

[bmat, f, uc, resid, ifail] = 4d02ue(n, a, b, ¢, bmat, y, bvec, £, 'm’, m)

3 Description

nag_ode bvp ps lin solve (d02ue) solves the constant linear coefficient ordinary differential problem

m d/
> fings=f@), wela

=0

subject to a set of m linear constraints at points y; € [a,b], for i =1,2,... ,m:

m d]u
ZBi,jJrl (ﬁ) = [,
=0 T/ (z=y;)

where 1 <m <4, Bisanm X (m + 1) matrix of constant coefficients and §; are constants. The points
y; are usually either a or b.

The function f(z) is supplied as an array of Chebyshev coefficients ¢;, j =0, 1,...,n for the function
discretized on n + 1 Chebyshev Gauss—Lobatto points (as returned by nag ode bvp ps lin cgl grid
(d02uc)); the coefficients are normally obtained by a previous call to nag ode bvp ps lin_coeffs
(d02ua). The solution and its derivatives (up to order m) are returned, in the form of their Chebyshev
series representation, as arrays of Chebyshev coefficients; subsequent calls to nag ode bvp ps lin_
cgl vals (d02ub) will return the corresponding function and derivative values at the Chebyshev Gauss—
Lobatto discretization points on [a,b]. Function and derivative values can be obtained on any uniform
grid over the same range [a,b] by calling the interpolation function nag ode bvp ps_ lin grid vals
(d02uw).
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Parameters
Compulsory Input Parameters
n — INTEGER

n, where the number of grid points is n + 1.

Constraint: n > 8 and n is even.

a — REAL (KIND=nag_wp)
a, the lower bound of domain [a, b].

Constraint: a < b.

b — REAL (KIND=nag_ wp)
b, the upper bound of domain [a, b].

Constraint: b > a.

¢(n+1) — REAL (KIND=nag_wp) array

The Chebyshev coefficients c¢;, j=0,1,...,n, for the right hand side of the boundary value
problem. Usually these are obtained by a previous call of nag ode bvp ps lin_coeffs (d02ua).
bmat(m, m + 1) — REAL (KIND=nag_wp) array

bmat(i, j + 1) must contain the coefficients B; ., for i=1,2,...,mand j=0,1,...,m, in the
problem formulation of Section 3.

y(m) — REAL (KIND=nag_wp) array

The points, y;, for i =1,2,...,m, where the boundary conditions are discretized.

bvec(m) — REAL (KIND=nag wp) array

The values, §;, for +=1,2,...,m, in the formulation of the boundary conditions given in
Section 3.

f(m + 1) — REAL (KIND=nag_wp) array

The coefficients, f;, for j=1,2,...,m + 1, in the formulation of the linear boundary value
problem given in Section 3. The highest order term, f(m + 1), needs to be nonzero to have a well
posed problem.

Optional Input Parameters

m — INTEGER

Default: the first dimension of the array bmat and the dimension of the arrays y, bvee. (An error
is raised if these dimensions are not equal.)

The order, m, of the boundary value problem to be solved.

Constraint: 1 <m < 4,

Output Parameters
bmat(m,m + 1) — REAL (KIND=nag_wp) array

The coefficients have been scaled to form an equivalent problem defined on the domain [—1, 1].
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2: f(m + 1) — REAL (KIND=nag_wp) array

The coefficients have been scaled to form an equivalent problem defined on the domain [—1, 1].

3: uc(n+1,m + 1) — REAL (KIND=nag_wp) array

The Chebyshev coefficients in the Chebyshev series representations of the solution and
derivatives of the solution to the boundary value problem. The n + 1 elements uc(l :n+1,1)
contain the coefficients representing the solution U(z;), for i=0,1,...,n. uc(l :n+1,5+1)
contains the coefficients representing the jth derivative of U, for j=1,2,...,m.

4: resid — REAL (KIND=nag_ wp)

The maximum residual resulting from substituting the solution vectors returned in uc into both
linear equations of Section 3 representing the linear boundary value problem and associated

boundary conditions. That is
m d‘]u
max {m< > Bn(),, >m< )}
(z=yi)
ifail = O unless the function detects an error (see Section 5).

m dju
j;fjﬂ <@> (o) - f(@)

J=0
5: ifail — INTEGER

6  Error Indicators and Warnings
Errors or warnings detected by the function:
ifail =1

Constraint: n is even.

Constraint: n > 8.
ifail = 2

Constraint: a < b.
ifail = 3

On entry, f(m + 1) = 0.0.
ifail = 6

Constraint: 1 < m < 4,
ifail =7

Internal error while unpacking matrix during iterative refinement.
Please contact NAG.

ifail = 8

Singular matrix encountered during iterative refinement.
Please check that your system is well posed.

ifail = 9 (warning)
During iterative refinement, the maximum number of iterations was reached.

ifail = 10 (warning)

During iterative refinement, convergence was achieved, but the residual is more than
100 X machine precision.
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ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.
ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7  Accuracy

The accuracy should be close to machine precision for well conditioned boundary value problems.

8 Further Comments

The number of operations is of the order nlog(n) and the memory requirements are O(n); thus the
computation remains efficient and practical for very fine discretizations (very large values of n).
Collocation methods will be faster for small problems, but the method of nag _ode bvp ps lin_solve
(d02ue) should be faster for larger discretizations.

9 Example

This example solves the third-order problem 4U,,, +3U,, +2U,+ U =2sinx —2cosx on
[-7/2,7/2] subject to the boundary conditions U[-7n/2]=0,
3Uye[—7/2] 4+ 2U,[—7/2] + U[—7/2] = 2, and 3U,,[r/2] + 2U,[r/2] 4+ Ulr/2] = —2 using the Cheby-
shev integration formulation on a Chebyshev Gauss—Lobatto grid of order 16.

9.1 Program Text

function dO2ue_example

fprintf (’d02ue example results\n\n’);

n = nag_int(16);
a = -pi/2;
b = pi/2;

o

Set up boundary condition on left side of domain

= [a, bl;

Set up Dirichlet condition using exact solution at x=a.
bmat zeros(2, 3);

00 K

bmat (1, 1:2) = [1, 11;
bmat (2, 1:2) = [1, 11;
bvec = [cos(a) - sin(a), cos(b) - sin(b)];

% Set up problem definition
£f =11, 2, 31;

% Set up solution grid
[x, ifail] = dO2uc(n, a, b);

% Set up problem right hand sides for grid and transform
fO = -2*sin(x) - 2*cos(x);
[c, ifail] = dO2ua(n, £f0);

% Solve in coefficient space
[bmat, f, uc, resid, ifail] = dO2ue(n, a, b, c, bmat, y, bvec, f);

% Evaluate solution and derivatives on Chebyshev grid

u = zeros(n+l, 3);
for g=0:2
[u(:, g+1), ifail] = dO2ub(n, a, b, nag_int(qg), uc(:, g+1));
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end

% Print Solution

fprintf (’\nNumerical solution U and its first two derivatives\n’);
Uxx\n') ;

fprintf (’ X U Ux
fprintf(’%10.4f %$10.4f %10.4f %10.4f\n’

9.2 Program Results

dO2ue example results

Numerical solution U and its first two

, [xul’);

derivatives

d02ue

X U Ux Uxx
-1.5708 -0.0000 1.0000 0.0000
-1.5406 0.0302 0.9995 -0.0302
-1.4512 0.1193 0.9929 -0.1193
-1.3061 0.2616 0.9652 -0.2616
-1.1107 0.4440 0.8960 -0.4440
-0.8727 0.6428 0.7661 -0.6428
-0.6011 0.8247 0.5656 -0.8247
-0.30064 0.9534 0.3017 -0.9534
-0.0000 1.0000 0.0000 -1.0000

0.3064 0.9534 -0.3017 -0.9534
0.6011 0.8247 -0.5656 -0.8247
0.8727 0.6428 -0.7661 -0.6428
1.1107 0.4440 -0.8960 -0.4440
1.3061 0.2616 -0.9652 -0.2616
1.4512 0.1193 -0.9929 -0.1193
1.5406 0.0302 -0.9995 -0.0302
1.5708 -0.0000 -1.0000 -0.0000
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