NAG Toolbox

nag sum fft complex 1d sep (c06fc)

1 Purpose

 $nag_sum_fft_complex_1d_sep$ (c06fc) calculates the discrete Fourier transform of a sequence of n complex data values (using a work array for extra speed).

2 Syntax

3 Description

Given a sequence of n complex data values z_j , for j = 0, 1, ..., n - 1, nag_sum_fft_complex_1d_sep (c06fc) calculates their discrete Fourier transform defined by

$$\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform defined by

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be preceded and followed by the complex conjugation of the data values and the transform (by negating the imaginary parts stored in y).

nag_sum_fft_complex_1d_sep (c06fc) uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$ array

If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_fft_complex_1d_sep (c06fc) is called, then $\mathbf{x}(j)$ must contain x_j , the real part of z_j , for $j=0,1,\ldots,n-1$.

2: y(n) - REAL (KIND=nag wp) array

If y is declared with bounds $(0 : \mathbf{n} - 1)$ in the function from which nag_sum_fft_complex_1d_sep (c06fc) is called, then $\mathbf{y}(j)$ must contain y_j , the imaginary part of z_j , for $j = 0, 1, \dots, n - 1$.

Mark 25 c06fc.1

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the dimension of the arrays \mathbf{x} , \mathbf{y} . (An error is raised if these dimensions are not equal.) n, the number of data values. The largest prime factor of \mathbf{n} must not exceed 19, and the total number of prime factors of \mathbf{n} , counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

5.3 Output Parameters

1: $\mathbf{x}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$ array

The real parts a_k of the components of the discrete Fourier transform. If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_fft_complex_1d_sep (c06fc) is called, then for $0 \le k \le n-1$, a_k is contained in $\mathbf{x}(k)$.

2: $y(n) - REAL (KIND=nag_wp) array$

The imaginary parts b_k of the components of the discrete Fourier transform. If \mathbf{y} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_fft_complex_1d_sep (c06fc) is called, then for $0 \le k \le n-1$, b_k is contained in $\mathbf{y}(k)$.

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

 $\mathbf{ifail} = 1$

At least one of the prime factors of **n** is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} \leq 1$.

 $\mathbf{ifail} = 4$

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

c06fc.2 Mark 25

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log(n)$, but also depends on the factorization of n. nag_sum_fft_complex_1d_sep (c06fc) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This example reads in a sequence of complex data values and prints their discrete Fourier transform (as computed by nag_sum_fft_complex_1d_sep (c06fc)). It then performs an inverse transform using nag_sum_fft_complex_1d_sep (c06fc), and prints the sequence so obtained alongside the original data values.

9.1 Program Text

```
function c06fc_example
fprintf('c06fc example results\n\n');
z = [0.34907 - 0.37168*i;
     0.54890 - 0.35669*i;
     0.74776 - 0.31175*i;
     0.94459 - 0.23702*i;
     1.13850 - 0.13274*i;
     1.32850 + 0.00074*i;
     1.51370 + 0.16298*i;
x = real(z):
y = imag(z);
[ztr, zti, ifail] = c06fc(x, y);
ztrans = ztr + i*zti;
disp('Components of discrete Fourier transform')
disp(ztrans);
[xres, yres, ifail] = c06fc(ztr, -zti);
zres = xres-i*vres;
zout = [z zres];
fprintf('Original sequence as restored by inverse transform\n');
fprintf('
               Original
                                   Restored\n')
disp(zout);
```

9.2 Program Results

```
c06fc example results

Components of discrete Fourier transform
    2.4836 - 0.4710i
    -0.5518 + 0.4968i
    -0.3671 + 0.0976i
    -0.2877 - 0.0586i
    -0.2251 - 0.1748i
    -0.1483 - 0.3084i
    0.0198 - 0.5650i

Original sequence as restored by inverse transform
    Original Restored
    0.3491 - 0.3717i    0.3491 - 0.3717i
    0.5489 - 0.3567i    0.5489 - 0.3567i
```

Mark 25 c06fc.3

0.7478	-	0.3118i	0.7478	-	0.3117i
0.9446	-	0.2370i	0.9446	-	0.2370i
1.1385	-	0.1327i	1.1385	-	0.1327i
1.3285	+	0.0007i	1.3285	+	0.0007i
1.5137	+	0.1630i	1.5137	+	0.1630i

c06fc.4 (last) Mark 25