PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_rand_quasi_init (g05yl)
Purpose
Syntax
Description
nag_rand_quasi_init (g05yl) selects a quasi-random number generator through the input value of
genid and initializes the
iref communication array for use by the functions
nag_rand_quasi_normal (g05yj),
nag_rand_quasi_lognormal (g05yk) or
nag_rand_quasi_uniform (g05ym).
One of three types of quasi-random generator may be chosen, allowing the low-discrepancy sequences proposed by Sobol, Faure or Niederreiter to be generated.
Two sets of Sobol sequences are supplied, the first, is based on the work of
Joe and Kuo (2008). The second, referred to in the documentation as "Sobol (A659)", is based on Algorithm 659 of
Bratley and Fox (1988) with the extension to 1111 dimensions proposed by
Joe and Kuo (2003). Both sets of Sobol sequences should satisfy the so-called Property A, up to
dimensions, but the first set should have better two-dimensional projections than those produced using Algorithm 659.
References
Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator ACM Trans. Math. Software 14(1) 88–100
Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence generators ACM Trans. Math. Software 12(4) 362–376
Joe S and Kuo F Y (2003) Remark on Algorithm 659: implementing Sobol's quasirandom sequence generator ACM Trans. Math. Software (TOMS) 29 49–57
Joe S and Kuo F Y (2008) Constructing Sobol sequences with better two-dimensional projections SIAM J. Sci. Comput. 30 2635–2654
Parameters
Compulsory Input Parameters
- 1:
– int64int32nag_int scalar
-
Must identify the quasi-random generator to use.
- Sobol generator.
- Sobol (A659) generator.
- Niederreiter generator.
- Faure generator.
Constraint:
, , or .
- 2:
– int64int32nag_int scalar
-
The number of dimensions required.
Constraints:
- if , ;
- if , ;
- if , ;
- if , .
- 3:
– int64int32nag_int scalar
-
The number of terms of the sequence to skip on initialization for the Sobol and Niederreiter generators. If
,
iskip is ignored.
Constraint:
if , or , .
Optional Input Parameters
None.
Output Parameters
- 1:
– int64int32nag_int array
-
Contains initialization information for use by the generator functions
nag_rand_quasi_normal (g05yj),
nag_rand_quasi_lognormal (g05yk) and
nag_rand_quasi_uniform (g05ym).
iref must not be altered in any way between initialization and calls of the generator functions.
- 2:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Errors or warnings detected by the function:
-
-
Constraint: , , or .
-
-
Constraint: .
-
-
On entry, liref is too small.
-
-
On entry,
or
iskip is too large.
-
An unexpected error has been triggered by this routine. Please
contact
NAG.
-
Your licence key may have expired or may not have been installed correctly.
-
Dynamic memory allocation failed.
Accuracy
Not applicable.
Further Comments
The primitive polynomials and direction numbers used for the Sobol generator (
) were calculated by
Joe and Kuo (2008) using the search critera
.
Example
See
Example in
nag_rand_quasi_uniform (g05ym).
Open in the MATLAB editor:
g05yl_example
function g05yl_example
fprintf('g05yl example results\n\n');
iskip = int64(1000);
idim = int64(8);
genid = int64(1);
[iref, ifail] = g05yl( ...
genid,idim,iskip);
n = int64(200);
[quas, iref, ifail] = g05ym( ...
int64(n), iref);
p(1:n) = prod(abs(4*quas(1:idim,:)-2));
fsum = sum(p);
vsbl = fsum/double(n);
fprintf('Value of integral = %8.4f\n\n', vsbl);
fprintf('First 10 variates\n');
for i = 1:10
fprintf(' %3d', i);
fprintf(' %7.4f', quas(1:idim,i));
fprintf('\n');
end
g05yl example results
Value of integral = 1.0410
First 10 variates
1 0.7197 0.5967 0.0186 0.1768 0.7803 0.4072 0.5459 0.3994
2 0.9697 0.3467 0.7686 0.9268 0.5303 0.1572 0.2959 0.1494
3 0.4697 0.8467 0.2686 0.4268 0.0303 0.6572 0.7959 0.6494
4 0.3447 0.4717 0.1436 0.3018 0.1553 0.7822 0.4209 0.0244
5 0.8447 0.9717 0.6436 0.8018 0.6553 0.2822 0.9209 0.5244
6 0.5947 0.2217 0.3936 0.0518 0.9053 0.0322 0.1709 0.7744
7 0.0947 0.7217 0.8936 0.5518 0.4053 0.5322 0.6709 0.2744
8 0.0635 0.1904 0.0498 0.4580 0.6240 0.2510 0.9521 0.8057
9 0.5635 0.6904 0.5498 0.9580 0.1240 0.7510 0.4521 0.3057
10 0.8135 0.4404 0.2998 0.2080 0.3740 0.5010 0.7021 0.0557
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015