hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_int_hypergeom (g05te)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_int_hypergeom (g05te) generates a vector of pseudorandom integers from the discrete hypergeometric distribution of the number of specified items in a sample of size l, taken from a population of size k with m specified items in it.

Syntax

[r, state, x, ifail] = g05te(mode, n, ns, np, m, r, state)
[r, state, x, ifail] = nag_rand_int_hypergeom(mode, n, ns, np, m, r, state)

Description

nag_rand_int_hypergeom (g05te) generates n integers xi from a discrete hypergeometric distribution, where the probability of xi=I is
Pi=I= l!m!k-l!k-m! I!l-I!m-I!k-m-l+I!k!   if  I = max0,m+l-k , , minl,m , Pi=I=0   otherwise.  
The variates can be generated with or without using a search table and index. If a search table is used then it is stored with the index in a reference vector and subsequent calls to nag_rand_int_hypergeom (g05te) with the same parameter values can then use this reference vector to generate further variates. The reference array is generated by a recurrence relation if lmk-lk-m<50k3, otherwise Stirling's approximation is used.
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_int_hypergeom (g05te).

References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Parameters

Compulsory Input Parameters

1:     mode int64int32nag_int scalar
A code for selecting the operation to be performed by the function.
mode=0
Set up reference vector only.
mode=1
Generate variates using reference vector set up in a prior call to nag_rand_int_hypergeom (g05te).
mode=2
Set up reference vector and generate variates.
mode=3
Generate variates without using the reference vector.
Constraint: mode=0, 1, 2 or 3.
2:     n int64int32nag_int scalar
n, the number of pseudorandom numbers to be generated.
Constraint: n0.
3:     ns int64int32nag_int scalar
l, the sample size of the hypergeometric distribution.
Constraint: 0nsnp.
4:     np int64int32nag_int scalar
k, the population size of the hypergeometric distribution.
Constraint: np0.
5:     m int64int32nag_int scalar
m, the number of specified items of the hypergeometric distribution.
Constraint: 0mnp.
6:     rlr – double array
lr, the dimension of the array, must satisfy the constraint
  • if mode=0 or 2, lr must not be too small, but the limit is too complicated to specify;
  • if mode=1, lr must remain unchanged from the previous call to nag_rand_int_hypergeom (g05te).
If mode=1, the reference vector from the previous call to nag_rand_int_hypergeom (g05te).
If mode=3, r is not referenced.
7:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

None.

Output Parameters

1:     rlr – double array
If mode3, the reference vector.
2:     state: int64int32nag_int array
Contains updated information on the state of the generator.
3:     xn int64int32nag_int array
The pseudorandom numbers from the specified hypergeometric distribution.
4:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: mode=0, 1, 2 or 3.
   ifail=2
Constraint: n0.
   ifail=3
Constraint: 0nsnp.
   ifail=4
Constraint: np0.
   ifail=5
Constraint: 0mnp.
   ifail=6
On entry, some of the elements of the array r have been corrupted or have not been initialized.
The value of ns, np or m is not the same as when r was set up in a previous call with mode=0 or 2.
   ifail=7
On entry, lr is too small when mode=0 or 2.
   ifail=8
On entry, state vector has been corrupted or not initialized.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

None.

Example

The example program prints 20 pseudorandom integers from a hypergeometric distribution with l=500, m=900 and n=1000, generated by a single call to nag_rand_int_hypergeom (g05te), after initialization by nag_rand_init_repeat (g05kf).
function g05te_example


fprintf('g05te example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Number of variates
n = int64(20);

% Parameters
ns = int64(500);
np = int64(1000);
m = int64(900);

% Generate variates from hypergeomtric distribution
mode = int64(2);
r = zeros(200, 1);
[r, state, x, ifail] = g05te( ...
                              mode, n, ns, np, m, r, state);

disp('Variates');
disp(double(x));


g05te example results

Variates
   452
   444
   453
   454
   444
   450
   449
   454
   450
   452
   442
   447
   451
   442
   451
   447
   447
   462
   456
   450


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015