hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_dist_f (g05sh)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_dist_f (g05sh) generates a vector of pseudorandom numbers taken from an F (or Fisher's variance ratio) distribution with μ and ν degrees of freedom.

Syntax

[state, x, ifail] = g05sh(n, df1, df2, state)
[state, x, ifail] = nag_rand_dist_f(n, df1, df2, state)

Description

The distribution has PDF (probability density function)
f x = μ+ν-2 2 ! x 12 μ-1 12 μ-1! 12 ν-1 ! 1+ μν x 12 μ+ν × μν 12μ if ​ x>0 , fx=0 otherwise.  
nag_rand_dist_f (g05sh) calculates the values
ν yi μ zi ,   i=1,2,,n ,  
where yi and zi are generated by nag_rand_dist_gamma (g05sj) from gamma distributions with parameters 12μ,2 and 12ν,2 respectively (i.e., from χ2-distributions with μ and ν degrees of freedom).
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_dist_f (g05sh).

References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Parameters

Compulsory Input Parameters

1:     n int64int32nag_int scalar
n, the number of pseudorandom numbers to be generated.
Constraint: n0.
2:     df1 int64int32nag_int scalar
μ, the number of degrees of freedom of the distribution.
Constraint: df11.
3:     df2 int64int32nag_int scalar
ν, the number of degrees of freedom of the distribution.
Constraint: df21.
4:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

None.

Output Parameters

1:     state: int64int32nag_int array
Contains updated information on the state of the generator.
2:     xn – double array
The n pseudorandom numbers from the specified F-distribution.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n0.
   ifail=2
Constraint: df11.
   ifail=3
Constraint: df21.
   ifail=4
On entry, state vector has been corrupted or not initialized.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

The time taken by nag_rand_dist_f (g05sh) increases with μ and ν.

Example

This example prints five pseudorandom numbers from an F-distribution with two and three degrees of freedom, generated by a single call to nag_rand_dist_f (g05sh), after initialization by nag_rand_init_repeat (g05kf).
function g05sh_example


fprintf('g05sh example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Number of variates
n = int64(5);

% Parameters
df1 = int64(2);
df2 = int64(3);

% Generate variates from an F-distribution
[state, x, ifail] = g05sh( ...
                           n, df1, df2, state);

disp('Variates');
disp(x);


g05sh example results

Variates
    1.4401
    1.8083
    0.3638
    0.5464
    4.0895


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015