hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_dist_dirichlet (g05se)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_dist_dirichlet (g05se) generates a vector of pseudorandom numbers taken from a Dirichlet distribution.

Syntax

[state, x, ifail] = g05se(n, a, state, 'm', m)
[state, x, ifail] = nag_rand_dist_dirichlet(n, a, state, 'm', m)

Description

The distribution has PDF (probability density function)
fx = 1 Bα i=1 m x i αi - 1 and Bα = i=1 m Γ αi Γ i=1 m αi  
where x = x1,x2,,xm  is a vector of dimension m, such that xi>0 for all i and i=1 m xi=1.
nag_rand_dist_dirichlet (g05se) generates a draw from a Dirichlet distribution by first drawing m independent samples, yigammaαi,1, i.e., independent draws from a gamma distribution with parameters αi>0 and one, and then setting xi=yi/ j=1 m yj.
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_dist_dirichlet (g05se).

References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Parameters

Compulsory Input Parameters

1:     n int64int32nag_int scalar
n, the number of pseudorandom numbers to be generated.
Constraint: n0.
2:     am – double array
The parameter vector for the distribution.
Constraint: ai>0.0, for i=1,2,,m.
3:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the dimension of the array a.
m, the number of dimensions of the distribution.
Constraint: m>0.

Output Parameters

1:     state: int64int32nag_int array
Contains updated information on the state of the generator.
2:     xldxm – double array
The n pseudorandom numbers from the specified Dirichlet distribution, with xij holding the jth dimension for the ith variate.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n0.
   ifail=2
Constraint: m > 0.
   ifail=3
On entry, at least one ai0.
   ifail=4
On entry, state vector has been corrupted or not initialized.
   ifail=6
Constraint: ldxn.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

None.

Example

This example prints a set of five pseudorandom numbers from a Dirichlet distribution with parameters m=4 and α=2.0,2.0,2.0,2.0, generated by a single call to nag_rand_dist_dirichlet (g05se), after initialization by nag_rand_init_repeat (g05kf).
function g05se_example


fprintf('g05se example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Number of variates
n = int64(5);
% Parameters
a = [2; 2; 2; 2];

% Generate variates from Dirichlet distribution
[state, x, ifail] = g05se( ...
                           n, a, state);

disp('Variates');
disp(x);


g05se example results

Variates
    0.3600    0.3138    0.0837    0.2426
    0.2874    0.5121    0.1497    0.0509
    0.2286    0.2190    0.3959    0.1566
    0.1744    0.3961    0.2764    0.1530
    0.1522    0.2845    0.2074    0.3559


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015