where | is a vector of observations on the dependent variable, |
is a known by design matrix for the fixed independent variables, | |
is a vector of length of unknown fixed effects, | |
is a known by design matrix for the random independent variables, | |
is a vector of length of unknown random effects, | |
and | is a vector of length of unknown random errors. |
Description | Equivalent nag_opt_bounds_mod_deriv2_comp (e04lb) argument | Default Value | |
Number of iterations | maxcal | ||
Unit number for monitoring information | n/a | As returned by nag_file_set_unit_advisory (x04ab) | |
Print optional parameters ( print) | n/a | (no printing performed) | |
Frequency that monitoring information is printed | iprint | ||
Optimizer used | n/a | n/a |
Description | Equivalent nag_opt_nlp1_solve (e04uc) argument | Default Value | |
Number of iterations | Major Iteration Limit | ||
Unit number for monitoring information | n/a | As returned by nag_file_set_unit_advisory (x04ab) | |
Print optional parameters ( print, otherwise no print) | List/Nolist | (no printing performed) | |
Frequency that monitoring information is printed | Major Print Level | ||
Optimizer used | n/a | n/a | |
Number of minor iterations | Minor Iteration Limit | ||
Frequency that additional monitoring information is printed | Minor Print Level |
Description | Equivalent nag_opt_bounds_mod_deriv2_comp (e04lb) argument | Default Value | |
Sweep tolerance | n/a | ||
Lower bound for | n/a | ||
Upper bound for | n/a | ||
Accuracy of linear minimizations | eta | ||
Accuracy to which solution is required | xtol | ||
Initial distance from solution | stepmx |
Description | Equivalent nag_opt_nlp1_solve (e04uc) argument | Default Value | |
Sweep tolerance | n/a | ||
Lower bound for | n/a | ||
Upper bound for | n/a | ||
Line search tolerance | Line Search Tolerance | ||
Optimality tolerance | Optimality Tolerance |
Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.
Open in the MATLAB editor: g02je_example
function g02je_example fprintf('g02je example results\n\n'); n = 90; ncol = 12; nrndm = 3; nvpr = int64(7); % The number of levels associated with each of the independent variables levels = [int64(2); 3; 2; 3; 2; 3; 1; 4; 5; 2; 3; 3]; % The Fixed part of the model fixed = [int64(2); 1; 1; 2]; % The Random part of the model rndm = [int64(2), 2, 3; 0, 0, 0; 3, 5, 7; 4, 6, 8; 3, 2, 9; 10, 11, 1; 11, 12, 12; 12, 0, 0]; % Dependant data y = [ 3.1100; 2.8226; 7.4543; 4.4313; 6.1543; -0.1783; 4.6748; 7.0667; 1.4262; 7.7290; -2.1806; 6.8419; 1.2590; 8.8405; 6.1657; -4.5605; -1.2367; -12.2932; -2.3374; 0.0716; 0.1895; 1.5608; -0.8529; -4.1169; 3.9977; -8.1277; -4.9656; -0.6428; -5.5152; -5.5657; 14.8177; 16.9783; 13.8966; 14.8166; 19.3640; 9.5299; 12.0102; 6.1551; -1.7048; 2.7640; 2.8065; 0.0974; -7.8080; -18.0450; -2.8199; 8.9893; 3.7978; -6.3493; 8.1411; -7.5483; -0.4600; -3.2135; -6.6562; 5.1267; 3.5592; -4.4420; -8.5965; -6.3187; -7.8953; -10.1383; -7.8850; 23.2001; 5.5829; -4.3698; 2.1274; -2.7184; -17.9128; -1.2708; -24.2735; -14.7374; 0.1713; 8.0006; 1.2100; 3.3307; -22.6713; 7.5562; -7.0694; 3.7159; -4.3135; -14.5577; -12.5107; 4.7708; 13.2797; -6.3243; -7.0549; -9.2713; -18.7788; -7.7230; -22.7230; -11.6609]; % Independent data dat = [1, 3, 2, 1, 2, 2,-0.3160, 4, 2, 1, 1, 1; 1, 1, 1, 3, 1, 2,-1.3377, 1, 4, 1, 1, 1; 1, 3, 1, 3, 1, 3,-0.7610, 4, 2, 1, 1, 1; 2, 3, 2, 1, 1, 3,-2.2976, 4, 2, 1, 1, 1; 2, 2, 1, 3, 2, 3,-0.4263, 2, 1, 1, 1, 1; 2, 1, 2, 3, 1, 3, 1.4067, 3, 3, 2, 1, 1; 2, 3, 2, 1, 2, 1,-1.4669, 1, 2, 2, 1, 1; 1, 1, 1, 3, 2, 3, 0.4717, 2, 4, 2, 1, 1; 1, 3, 2, 3, 2, 1, 0.4436, 1, 3, 2, 1, 1; 1, 1, 1, 2, 2, 3,-0.5950, 3, 4, 2, 1, 1; 1, 3, 1, 3, 1, 1,-1.7981, 4, 2, 1, 2, 1; 2, 3, 1, 2, 1, 1, 0.2397, 1, 4, 1, 2, 1; 1, 2, 2, 1, 2, 3, 0.4742, 1, 1, 1, 2, 1; 2, 2, 2, 2, 2, 3, 0.6888, 3, 1, 1, 2, 1; 2, 1, 2, 3, 1, 3,-1.0616, 3, 5, 1, 2, 1; 1, 2, 2, 2, 2, 1,-0.5356, 1, 3, 2, 2, 1; 1, 3, 2, 2, 1, 1,-1.2963, 2, 5, 2, 2, 1; 1, 2, 2, 1, 2, 2,-1.5389, 3, 2, 2, 2, 1; 2, 3, 1, 1, 2, 2,-0.6408, 2, 1, 2, 2, 1; 1, 2, 2, 2, 1, 1, 0.6574, 1, 1, 2, 2, 1; 2, 1, 1, 1, 1, 3, 0.9259, 1, 2, 1, 3, 1; 2, 2, 2, 1, 2, 2, 1.5080, 3, 1, 1, 3, 1; 2, 3, 1, 1, 1, 3, 2.5821, 2, 3, 1, 3, 1; 1, 2, 2, 1, 2, 3, 0.4102, 1, 4, 1, 3, 1; 2, 1, 2, 3, 2, 2, 0.7839, 2, 5, 1, 3, 1; 1, 2, 2, 3, 2, 1,-1.8812, 4, 2, 2, 3, 1; 1, 2, 1, 3, 2, 3, 0.7770, 4, 1, 2, 3, 1; 2, 2, 1, 2, 1, 3, 0.2590, 3, 1, 2, 3, 1; 2, 3, 2, 2, 2, 3,-0.9250, 3, 3, 2, 3, 1; 2, 2, 1, 3, 2, 3,-0.4831, 1, 5, 2, 3, 1; 2, 2, 1, 3, 1, 3, 0.5046, 3, 3, 1, 1, 2; 2, 1, 1, 2, 2, 1,-0.6903, 2, 1, 1, 1, 2; 1, 3, 2, 2, 2, 1, 1.6166, 2, 5, 1, 1, 2; 2, 2, 2, 2, 1, 3, 0.2778, 2, 3, 1, 1, 2; 2, 3, 2, 2, 1, 2, 1.9586, 4, 2, 1, 1, 2; 1, 3, 1, 1, 1, 3, 1.0506, 2, 5, 2, 1, 2; 2, 1, 1, 3, 2, 3, 0.4871, 1, 1, 2, 1, 2; 2, 1, 2, 3, 2, 1, 2.0891, 4, 4, 2, 1, 2; 1, 2, 1, 1, 2, 2, 1.4338, 4, 3, 2, 1, 2; 1, 1, 2, 3, 1, 2,-1.1196, 3, 4, 2, 1, 2; 1, 3, 1, 1, 2, 1, 0.3367, 3, 2, 1, 2, 2; 2, 2, 1, 3, 1, 1, 0.1092, 2, 2, 1, 2, 2; 1, 1, 1, 2, 2, 2, 0.4007, 4, 1, 1, 2, 2; 2, 3, 1, 1, 1, 2, 0.1460, 3, 5, 1, 2, 2; 2, 1, 2, 3, 1, 3,-0.3877, 3, 4, 1, 2, 2; 1, 1, 1, 2, 2, 1, 0.6957, 4, 3, 2, 2, 2; 2, 1, 1, 1, 2, 1,-0.4664, 3, 3, 2, 2, 2; 1, 1, 1, 1, 2, 3, 0.2067, 2, 4, 2, 2, 2; 2, 1, 2, 1, 1, 2, 0.4112, 1, 4, 2, 2, 2; 2, 2, 1, 1, 1, 2,-1.3734, 3, 3, 2, 2, 2; 2, 1, 2, 3, 1, 3, 0.7065, 1, 3, 1, 3, 2; 1, 2, 2, 2, 1, 2, 1.3628, 4, 2, 1, 3, 2; 2, 1, 2, 2, 2, 3,-0.5052, 4, 5, 1, 3, 2; 2, 1, 1, 1, 2, 1,-1.3457, 2, 5, 1, 3, 2; 1, 1, 2, 1, 2, 3,-1.8022, 3, 4, 1, 3, 2; 2, 3, 1, 2, 1, 1, 0.0116, 2, 4, 2, 3, 2; 2, 2, 1, 3, 2, 3,-0.9075, 1, 3, 2, 3, 2; 2, 2, 2, 2, 2, 3,-1.4707, 1, 1, 2, 3, 2; 2, 2, 1, 1, 2, 1,-1.2938, 2, 3, 2, 3, 2; 1, 3, 1, 3, 2, 2,-1.1660, 4, 4, 2, 3, 2; 1, 2, 1, 1, 2, 3, 0.0397, 4, 4, 1, 1, 3; 1, 3, 1, 2, 1, 3,-0.5987, 3, 2, 1, 1, 3; 2, 3, 2, 2, 1, 1, 0.6683, 3, 3, 1, 1, 3; 2, 2, 1, 1, 2, 2,-0.0106, 1, 3, 1, 1, 3; 1, 2, 1, 3, 2, 2, 0.5885, 1, 3, 1, 1, 3; 1, 1, 1, 1, 1, 2, 0.4555, 1, 5, 2, 1, 3; 2, 2, 2, 1, 1, 2, 0.6502, 4, 3, 2, 1, 3; 1, 1, 1, 3, 1, 1,-0.1601, 1, 3, 2, 1, 3; 2, 2, 1, 3, 2, 3, 1.6910, 1, 1, 2, 1, 3; 2, 2, 2, 3, 1, 2, 0.1053, 4, 4, 2, 1, 3; 2, 1, 2, 3, 2, 2,-0.4037, 3, 4, 1, 2, 3; 1, 3, 2, 3, 1, 3,-0.5853, 3, 2, 1, 2, 3; 2, 3, 2, 1, 1, 1,-0.3037, 1, 3, 1, 2, 3; 1, 3, 1, 1, 2, 2,-0.0774, 1, 4, 1, 2, 3; 2, 3, 1, 2, 2, 1, 0.4733, 4, 5, 1, 2, 3; 1, 3, 2, 2, 1, 2,-0.0354, 4, 2, 2, 2, 3; 1, 3, 2, 2, 1, 1,-0.6640, 2, 1, 2, 2, 3; 2, 3, 1, 3, 1, 1, 0.0335, 4, 4, 2, 2, 3; 1, 2, 2, 2, 1, 3, 0.1351, 1, 1, 2, 2, 3; 1, 1, 2, 1, 2, 3,-0.5951, 3, 4, 2, 2, 3; 2, 2, 2, 3, 1, 3, 0.2735, 3, 2, 1, 3, 3; 2, 2, 1, 1, 1, 3, 0.3157, 1, 2, 1, 3, 3; 2, 2, 2, 1, 1, 1,-1.0843, 2, 3, 1, 3, 3; 1, 2, 2, 1, 2, 2,-0.0836, 4, 2, 1, 3, 3; 2, 1, 2, 1, 1, 2,-0.2884, 2, 1, 1, 3, 3; 2, 3, 2, 3, 2, 3,-0.1006, 1, 2, 2, 3, 3; 1, 3, 1, 2, 2, 3, 0.5710, 1, 3, 2, 3, 3; 1, 1, 2, 1, 1, 2, 0.2776, 2, 3, 2, 3, 3; 2, 3, 2, 2, 1, 3,-0.7561, 4, 4, 2, 3, 3; 1, 2, 2, 2, 1, 2, 1.5549, 1, 4, 2, 3, 3]; vpr = [int64(1):7]; gamma = zeros(8, 1); gamma(1) = -1; % Estimate initial values for the variance components % Call the initialisation routine once to get lrcomm and licomm lrcomm = int64(0); licomm = int64(2); [nff, nlsv, nrf, rcomm, icomm, ifail] = ... g02jc( ... dat, levels, y, fixed, rndm, lrcomm, licomm); licomm = icomm(1); lrcomm = icomm(2); % Pre-process the data [nff, nlsv, nrf, rcomm, icomm, ifail] = ... g02jc( ... dat, levels, y, fixed, rndm, lrcomm, licomm); % Use default options iopt = zeros(0, 0, 'int64'); ropt = zeros(0, 0); lb = nff + nrf*nlsv; % Perform the analysis [gamma, effn, rnkx, ncov, lnlike, id, b, se, czz, cxx, cxz, ifail] = ... g02je( ... vpr, nvpr, gamma, lb, rcomm, icomm, iopt, ropt); % Print results fprintf('Number of observations (n) = %d\n', n); fprintf('Number of random factors (nrf) = %d\n', nrf); fprintf('Number of fixed factors (nff) = %d\n', nff); fprintf('Number of subject levels (nlsv) = %d\n', nlsv); fprintf('Rank of X (rnkx) = %d\n', rnkx); fprintf('Effective n (effn) = %d\n', effn); fprintf('Number of non-zero variance components (ncov) = %d\n', ncov); fprintf('\nParameter Estimates\n'); if nrf > 0 fprintf('\nRandom Effects\n'); end pb = -999; pfmt = ' '; for k = 1:nrf*nlsv tb = id(1,k); if tb ~= -999 vid = id(2,k); nv = rndm(1,tb); ns = rndm(3+nv,tb); tfmt = sprintf('%d ', id(3+1:3+ns,k)); if ( (pb ~= tb) || (strcmp(tfmt, pfmt) == 0) ) if (k ~= 1) fprintf('\n'); end fprintf(' Subject: '); for l=1:ns fprintf(' Variable %2d (Level %2d)',rndm(3+nv+l,tb), id(3+l,k)); end fprintf('\n'); end if (vid==0) % Intercept fprintf(' Intercept%18s%10.4f %10.4f\n', ' ', b(k), se(k)); else % variable vid specified in rndm aid = rndm(2+vid,tb); if (id(3,k)==0) fprintf(' Variable %2d%16s%10.4f %10.4f\n', aid, ' ', b(k), se(k)); else fprintf(' Variable %2d (Level %2d) %10.4f %10.4f\n', ... aid, id(3,k), b(k), se(k)); end end pfmt = tfmt; end pb = tb; end if nff>0 fprintf('\nFixed Effects\n'); end for k = (nrf*nlsv+1):(nrf*nlsv+nff) if vid~=-999 vid = id(2,k); if vid==0 % Intercept fprintf(' Intercept%18s%10.4f %10.4f\n', ' ', b(k), se(k)); else % vid'th variable specified in fixed aid = fixed(2+vid); if (id(3,k)==0) fprintf(' Variable %2d%16s%10.4f %10.4f\n', aid, ' ', b(k), se(k)); else fprintf(' Variable %2d (Level %2d) %10.4f %10.4f\n', ... aid, id(3,k), b(k), se(k)); end end end end fprintf('\nVariance Components\n'); fprintf(' Estimate Parameter Subject\n'); for k = 1:nvpr fprintf('%10.5f ', gamma(k)); p = 0; for tb = 1:nrndm nv = rndm(1,tb); ns = rndm(3+nv,tb); if (rndm(2,tb)==1) p = p + 1; if (vpr(p)==k) fprintf('Intercept Variables '); fprintf('%2d ', rndm(3+nv+1:3+nv+ns, tb)); fprintf('\n'); end end for i = 1:nv p = p + 1; if (vpr(p)==k) fprintf('Variable %2d Variables %2d ', rndm(2+i,tb)); fprintf('%2d ', rndm(3+nv+1:3+nv+ns, tb)); end end end fprintf('\n'); end fprintf('\nsigma^2 = %15.5f\n', gamma(nvpr+1)); fprintf('-2log likelihood = %15.5f\n', lnlike);
g02je example results Number of observations (n) = 90 Number of random factors (nrf) = 55 Number of fixed factors (nff) = 4 Number of subject levels (nlsv) = 3 Rank of X (rnkx) = 4 Effective n (effn) = 90 Number of non-zero variance components (ncov) = 7 Parameter Estimates Random Effects Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1) Variable 3 (Level 1) 2.1566 3.7320 Variable 3 (Level 2) 1.7769 3.8543 Variable 4 (Level 1) 0.5583 3.0508 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1) Variable 4 (Level 3) 0.6776 3.0358 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 1) Variable 3 (Level 1) 1.4448 3.3293 Variable 3 (Level 2) -2.8634 3.3533 Variable 4 (Level 1) 3.6811 2.2253 Variable 4 (Level 2) -1.9988 2.2929 Variable 4 (Level 3) -2.1281 1.9896 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 1) Variable 3 (Level 1) -3.1562 3.8624 Variable 3 (Level 2) 2.8856 4.6985 Variable 4 (Level 1) -4.6811 2.2236 Variable 4 (Level 2) 5.5794 2.1390 Variable 4 (Level 3) -0.9832 2.2841 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 1) Variable 3 (Level 1) 4.3449 3.6258 Variable 3 (Level 2) -4.4285 3.4096 Variable 4 (Level 1) -1.0798 3.1008 Variable 4 (Level 2) 1.0536 2.9612 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1) Variable 3 (Level 1) 0.4216 4.0146 Variable 3 (Level 2) 0.2268 3.4265 Variable 4 (Level 1) -1.0626 2.3505 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1) Variable 4 (Level 3) 1.2664 2.5276 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1) Variable 3 (Level 1) 1.2785 3.4331 Variable 3 (Level 2) -1.6652 3.8605 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1) Variable 4 (Level 2) 0.7332 2.6958 Variable 4 (Level 3) -0.8547 2.7819 Subject: Variable 11 (Level 1) Variable 12 (Level 1) Variable 5 (Level 1) -0.5540 2.8120 Variable 5 (Level 2) 1.9179 2.7500 Variable 6 (Level 1) 0.6925 3.6813 Variable 6 (Level 2) -2.2632 3.1202 Variable 6 (Level 3) 4.3216 3.1131 Subject: Variable 11 (Level 2) Variable 12 (Level 1) Variable 5 (Level 1) 1.5151 2.9154 Variable 5 (Level 2) -1.7072 2.8715 Variable 6 (Level 1) 0.2154 3.9398 Variable 6 (Level 2) -3.7591 4.2153 Variable 6 (Level 3) 3.1563 4.7621 Subject: Variable 11 (Level 3) Variable 12 (Level 1) Variable 5 (Level 1) 1.7892 3.1214 Variable 5 (Level 2) -1.6473 3.1579 Variable 6 (Level 1) -1.2268 3.8853 Variable 6 (Level 2) 4.6247 3.6412 Variable 6 (Level 3) -3.1117 3.1648 Subject: Variable 12 (Level 1) Variable 7 0.6016 0.4634 Variable 8 (Level 1) 1.5887 1.2518 Variable 8 (Level 2) -0.7951 1.4856 Variable 8 (Level 3) 0.3798 1.6037 Variable 8 (Level 4) -0.8295 1.6629 Variable 9 (Level 1) 0.5197 1.5510 Variable 9 (Level 2) 0.0156 1.8248 Variable 9 (Level 3) -0.1723 1.8271 Variable 9 (Level 4) 0.4305 1.9494 Variable 9 (Level 5) -0.1412 2.0379 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2) Variable 3 (Level 1) 6.3424 3.3173 Variable 3 (Level 2) 5.7538 3.3626 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2) Variable 4 (Level 2) 2.5053 2.6520 Variable 4 (Level 3) 1.2953 2.6978 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2) Variable 3 (Level 1) 1.6342 3.7874 Variable 3 (Level 2) -2.8693 3.8549 Variable 4 (Level 1) -0.9274 2.7266 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2) Variable 4 (Level 3) 0.5394 2.7100 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 2) Variable 3 (Level 1) -10.2379 3.2977 Variable 3 (Level 2) 3.2457 4.0593 Variable 4 (Level 1) -2.8362 2.2599 Variable 4 (Level 2) 0.2805 2.9513 Variable 4 (Level 3) 0.3587 2.8663 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 2) Variable 3 (Level 1) -1.3161 3.1545 Variable 3 (Level 2) 8.2719 3.9322 Variable 4 (Level 1) -0.4813 2.3705 Variable 4 (Level 2) 2.6668 2.4832 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 2) Variable 3 (Level 1) 4.9485 3.9465 Variable 3 (Level 2) 0.0987 3.5531 Variable 4 (Level 1) 3.0791 2.1790 Variable 4 (Level 2) -1.9469 2.3796 Variable 4 (Level 3) 0.4536 2.1984 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 2) Variable 3 (Level 1) -4.5419 3.2940 Variable 3 (Level 2) -3.9095 4.0163 Variable 4 (Level 1) -0.4456 2.6194 Variable 4 (Level 2) -1.5462 2.6514 Variable 4 (Level 3) -0.6636 2.8738 Subject: Variable 11 (Level 1) Variable 12 (Level 2) Variable 5 (Level 1) 4.9921 3.0570 Variable 5 (Level 2) 0.8986 3.0576 Variable 6 (Level 1) 7.0091 3.7851 Variable 6 (Level 2) -1.3173 3.1348 Variable 6 (Level 3) 6.1881 3.4928 Subject: Variable 11 (Level 2) Variable 12 (Level 2) Variable 5 (Level 1) -0.3947 3.0751 Variable 5 (Level 2) 0.3750 3.0579 Variable 6 (Level 1) 6.9902 3.2654 Variable 6 (Level 2) -1.0683 3.5699 Variable 6 (Level 3) -5.9617 3.6688 Subject: Variable 11 (Level 3) Variable 12 (Level 2) Variable 5 (Level 1) -1.0471 3.0732 Variable 5 (Level 2) -0.7991 2.9597 Variable 6 (Level 1) 2.7549 3.8142 Variable 6 (Level 2) -6.3441 3.2624 Variable 6 (Level 3) -0.1341 3.5956 Subject: Variable 12 (Level 2) Variable 7 0.1533 0.5196 Variable 8 (Level 1) 1.6630 1.8224 Variable 8 (Level 2) -0.6835 1.6502 Variable 8 (Level 3) -0.0959 1.5604 Variable 8 (Level 4) 0.1696 1.4537 Variable 9 (Level 1) 1.0203 2.2901 Variable 9 (Level 2) 6.4354 1.7420 Variable 9 (Level 3) -1.5942 1.7761 Variable 9 (Level 4) 0.0955 1.9436 Variable 9 (Level 5) -3.9588 1.7124 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 3) Variable 3 (Level 1) 10.9751 3.2085 Variable 3 (Level 2) -1.0674 3.7219 Variable 4 (Level 1) -2.8350 2.2037 Variable 4 (Level 2) 3.7075 2.7912 Variable 4 (Level 3) 2.2405 2.2796 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3) Variable 3 (Level 1) -6.2719 3.3190 Variable 3 (Level 2) -9.2923 3.7884 Variable 4 (Level 1) -2.8586 2.3728 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3) Variable 4 (Level 3) -2.0316 2.2895 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 3) Variable 3 (Level 1) -3.3222 3.4246 Variable 3 (Level 2) -0.3111 3.2221 Variable 4 (Level 1) 1.6131 2.3970 Variable 4 (Level 2) -3.0099 2.9300 Variable 4 (Level 3) 0.2552 2.7229 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 3) Variable 3 (Level 1) 6.6372 3.9751 Variable 3 (Level 2) -5.4249 3.4039 Variable 4 (Level 1) -3.2357 2.8565 Variable 4 (Level 2) 1.5313 2.8232 Variable 4 (Level 3) 2.0854 3.0661 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3) Variable 3 (Level 1) 8.5902 4.0894 Variable 3 (Level 2) -1.6058 3.2906 Variable 4 (Level 1) 3.2575 2.5450 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3) Variable 4 (Level 3) -1.0630 2.8692 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 3) Variable 3 (Level 1) -4.5747 3.9475 Variable 3 (Level 2) -4.1752 3.0911 Variable 4 (Level 1) 1.0578 2.5496 Variable 4 (Level 2) -4.4284 2.2029 Variable 4 (Level 3) 0.6214 2.5884 Subject: Variable 11 (Level 1) Variable 12 (Level 3) Variable 5 (Level 1) 5.4387 3.0091 Variable 5 (Level 2) -8.5065 3.1099 Variable 6 (Level 1) -0.9179 3.7257 Variable 6 (Level 2) -2.4920 3.1176 Variable 6 (Level 3) -2.7772 3.4083 Subject: Variable 11 (Level 2) Variable 12 (Level 3) Variable 5 (Level 1) 4.4193 3.1282 Variable 5 (Level 2) -5.7324 3.1435 Variable 6 (Level 1) -5.9992 3.1431 Variable 6 (Level 2) 5.5657 3.2599 Variable 6 (Level 3) -2.2147 3.1758 Subject: Variable 11 (Level 3) Variable 12 (Level 3) Variable 5 (Level 1) 0.3594 2.9017 Variable 5 (Level 2) -1.3169 3.0004 Variable 6 (Level 1) 14.5815 3.8519 Variable 6 (Level 2) -5.2262 3.2578 Variable 6 (Level 3) -11.2864 3.1821 Subject: Variable 12 (Level 3) Variable 7 -0.2970 0.5930 Variable 8 (Level 1) 2.6255 1.5201 Variable 8 (Level 2) 0.5048 1.7865 Variable 8 (Level 3) -0.1518 1.8905 Variable 8 (Level 4) -4.3754 1.4651 Variable 9 (Level 1) -4.4219 2.0532 Variable 9 (Level 2) 3.7058 1.9085 Variable 9 (Level 3) -1.7524 1.7894 Variable 9 (Level 4) 0.4339 1.8210 Variable 9 (Level 5) -0.6161 2.3700 Fixed Effects Intercept 1.5913 2.4106 Variable 1 (Level 2) -1.5994 0.8183 Variable 2 (Level 2) -2.3793 1.0996 Variable 2 (Level 3) 0.5328 1.1677 Variance Components Estimate Parameter Subject 36.38867 Variable 3 Variables 10 11 12 11.43322 Variable 4 Variables 10 11 12 19.73586 Variable 5 Variables 11 12 39.80174 Variable 6 Variables 11 12 0.41583 Variable 7 Variables 12 5.16442 Variable 8 Variables 12 9.79904 Variable 9 Variables 12 sigma^2 = 0.00042 -2log likelihood = 617.11969