where | is a vector of observations on the dependent variable, |
is a known by design matrix for the fixed independent variables, | |
is a vector of length of unknown fixed effects, | |
is a known by design matrix for the random independent variables, | |
is a vector of length of unknown random effects, | |
and | is a vector of length of unknown random errors. |
Description | Equivalent nag_opt_bounds_mod_deriv2_comp (e04lb) argument | Default Value | |
Number of iterations | maxcal | ||
Unit number for monitoring information | n/a | As returned by nag_file_set_unit_advisory (x04ab) | |
Print optional parameters ( print) | n/a | (no printing performed) | |
Frequency that monitoring information is printed | iprint | ||
Optimizer used | n/a | n/a |
Description | Equivalent nag_opt_nlp1_solve (e04uc) argument | Default Value | |
Number of iterations | Major Iteration Limit | ||
Unit number for monitoring information | n/a | As returned by nag_file_set_unit_advisory (x04ab) | |
Print optional parameters ( print, otherwise no print) | List/Nolist | (no printing performed) | |
Frequency that monitoring information is printed | Major Print Level | ||
Optimizer used | n/a | n/a | |
Number of minor iterations | Minor Iteration Limit | ||
Frequency that additional monitoring information is printed | Minor Print Level |
Description | Equivalent nag_opt_bounds_mod_deriv2_comp (e04lb) argument | Default Value | |
Sweep tolerance | n/a | ||
Lower bound for | n/a | ||
Upper bound for | n/a | ||
Accuracy of linear minimizations | eta | ||
Accuracy to which solution is required | xtol | ||
Initial distance from solution | stepmx |
Description | Equivalent nag_opt_nlp1_solve (e04uc) argument | Default Value | |
Sweep tolerance | n/a | ||
Lower bound for | n/a | ||
Upper bound for | n/a | ||
Line search tolerance | Line Search Tolerance | ||
Optimality tolerance | Optimality Tolerance |
Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.
Open in the MATLAB editor: g02jd_example
function g02jd_example fprintf('g02jd example results\n\n'); % Problem size n = 90; ncol = 12; nrndm = 3; nvpr = int64(7); % The number of levels associated with each of the independent variables levels = [int64(2); 3; 2; 3; 2; 3; 1; 4; 5; 2; 3; 3]; % The Fixed part of the model fixed = [int64(2); 1; 1; 2]; % The Random part of the model rndm = [int64(2), 2, 3; 0, 0, 0; 3, 5, 7; 4, 6, 8; 3, 2, 9; 10, 11, 1; 11, 12, 12; 12, 0, 0]; % Dependant data y = [ 3.1100; 2.8226; 7.4543; 4.4313; 6.1543; -0.1783; 4.6748; 7.0667; 1.4262; 7.7290; -2.1806; 6.8419; 1.2590; 8.8405; 6.1657; -4.5605; -1.2367; -12.2932; -2.3374; 0.0716; 0.1895; 1.5608; -0.8529; -4.1169; 3.9977; -8.1277; -4.9656; -0.6428; -5.5152; -5.5657; 14.8177; 16.9783; 13.8966; 14.8166; 19.3640; 9.5299; 12.0102; 6.1551; -1.7048; 2.7640; 2.8065; 0.0974; -7.8080; -18.0450; -2.8199; 8.9893; 3.7978; -6.3493; 8.1411; -7.5483; -0.4600; -3.2135; -6.6562; 5.1267; 3.5592; -4.4420; -8.5965; -6.3187; -7.8953; -10.1383; -7.8850; 23.2001; 5.5829; -4.3698; 2.1274; -2.7184; -17.9128; -1.2708; -24.2735; -14.7374; 0.1713; 8.0006; 1.2100; 3.3307; -22.6713; 7.5562; -7.0694; 3.7159; -4.3135; -14.5577; -12.5107; 4.7708; 13.2797; -6.3243; -7.0549; -9.2713; -18.7788; -7.7230; -22.7230; -11.6609]; % Independent data dat = [1, 3, 2, 1, 2, 2,-0.3160, 4, 2, 1, 1, 1; 1, 1, 1, 3, 1, 2,-1.3377, 1, 4, 1, 1, 1; 1, 3, 1, 3, 1, 3,-0.7610, 4, 2, 1, 1, 1; 2, 3, 2, 1, 1, 3,-2.2976, 4, 2, 1, 1, 1; 2, 2, 1, 3, 2, 3,-0.4263, 2, 1, 1, 1, 1; 2, 1, 2, 3, 1, 3, 1.4067, 3, 3, 2, 1, 1; 2, 3, 2, 1, 2, 1,-1.4669, 1, 2, 2, 1, 1; 1, 1, 1, 3, 2, 3, 0.4717, 2, 4, 2, 1, 1; 1, 3, 2, 3, 2, 1, 0.4436, 1, 3, 2, 1, 1; 1, 1, 1, 2, 2, 3,-0.5950, 3, 4, 2, 1, 1; 1, 3, 1, 3, 1, 1,-1.7981, 4, 2, 1, 2, 1; 2, 3, 1, 2, 1, 1, 0.2397, 1, 4, 1, 2, 1; 1, 2, 2, 1, 2, 3, 0.4742, 1, 1, 1, 2, 1; 2, 2, 2, 2, 2, 3, 0.6888, 3, 1, 1, 2, 1; 2, 1, 2, 3, 1, 3,-1.0616, 3, 5, 1, 2, 1; 1, 2, 2, 2, 2, 1,-0.5356, 1, 3, 2, 2, 1; 1, 3, 2, 2, 1, 1,-1.2963, 2, 5, 2, 2, 1; 1, 2, 2, 1, 2, 2,-1.5389, 3, 2, 2, 2, 1; 2, 3, 1, 1, 2, 2,-0.6408, 2, 1, 2, 2, 1; 1, 2, 2, 2, 1, 1, 0.6574, 1, 1, 2, 2, 1; 2, 1, 1, 1, 1, 3, 0.9259, 1, 2, 1, 3, 1; 2, 2, 2, 1, 2, 2, 1.5080, 3, 1, 1, 3, 1; 2, 3, 1, 1, 1, 3, 2.5821, 2, 3, 1, 3, 1; 1, 2, 2, 1, 2, 3, 0.4102, 1, 4, 1, 3, 1; 2, 1, 2, 3, 2, 2, 0.7839, 2, 5, 1, 3, 1; 1, 2, 2, 3, 2, 1,-1.8812, 4, 2, 2, 3, 1; 1, 2, 1, 3, 2, 3, 0.7770, 4, 1, 2, 3, 1; 2, 2, 1, 2, 1, 3, 0.2590, 3, 1, 2, 3, 1; 2, 3, 2, 2, 2, 3,-0.9250, 3, 3, 2, 3, 1; 2, 2, 1, 3, 2, 3,-0.4831, 1, 5, 2, 3, 1; 2, 2, 1, 3, 1, 3, 0.5046, 3, 3, 1, 1, 2; 2, 1, 1, 2, 2, 1,-0.6903, 2, 1, 1, 1, 2; 1, 3, 2, 2, 2, 1, 1.6166, 2, 5, 1, 1, 2; 2, 2, 2, 2, 1, 3, 0.2778, 2, 3, 1, 1, 2; 2, 3, 2, 2, 1, 2, 1.9586, 4, 2, 1, 1, 2; 1, 3, 1, 1, 1, 3, 1.0506, 2, 5, 2, 1, 2; 2, 1, 1, 3, 2, 3, 0.4871, 1, 1, 2, 1, 2; 2, 1, 2, 3, 2, 1, 2.0891, 4, 4, 2, 1, 2; 1, 2, 1, 1, 2, 2, 1.4338, 4, 3, 2, 1, 2; 1, 1, 2, 3, 1, 2,-1.1196, 3, 4, 2, 1, 2; 1, 3, 1, 1, 2, 1, 0.3367, 3, 2, 1, 2, 2; 2, 2, 1, 3, 1, 1, 0.1092, 2, 2, 1, 2, 2; 1, 1, 1, 2, 2, 2, 0.4007, 4, 1, 1, 2, 2; 2, 3, 1, 1, 1, 2, 0.1460, 3, 5, 1, 2, 2; 2, 1, 2, 3, 1, 3,-0.3877, 3, 4, 1, 2, 2; 1, 1, 1, 2, 2, 1, 0.6957, 4, 3, 2, 2, 2; 2, 1, 1, 1, 2, 1,-0.4664, 3, 3, 2, 2, 2; 1, 1, 1, 1, 2, 3, 0.2067, 2, 4, 2, 2, 2; 2, 1, 2, 1, 1, 2, 0.4112, 1, 4, 2, 2, 2; 2, 2, 1, 1, 1, 2,-1.3734, 3, 3, 2, 2, 2; 2, 1, 2, 3, 1, 3, 0.7065, 1, 3, 1, 3, 2; 1, 2, 2, 2, 1, 2, 1.3628, 4, 2, 1, 3, 2; 2, 1, 2, 2, 2, 3,-0.5052, 4, 5, 1, 3, 2; 2, 1, 1, 1, 2, 1,-1.3457, 2, 5, 1, 3, 2; 1, 1, 2, 1, 2, 3,-1.8022, 3, 4, 1, 3, 2; 2, 3, 1, 2, 1, 1, 0.0116, 2, 4, 2, 3, 2; 2, 2, 1, 3, 2, 3,-0.9075, 1, 3, 2, 3, 2; 2, 2, 2, 2, 2, 3,-1.4707, 1, 1, 2, 3, 2; 2, 2, 1, 1, 2, 1,-1.2938, 2, 3, 2, 3, 2; 1, 3, 1, 3, 2, 2,-1.1660, 4, 4, 2, 3, 2; 1, 2, 1, 1, 2, 3, 0.0397, 4, 4, 1, 1, 3; 1, 3, 1, 2, 1, 3,-0.5987, 3, 2, 1, 1, 3; 2, 3, 2, 2, 1, 1, 0.6683, 3, 3, 1, 1, 3; 2, 2, 1, 1, 2, 2,-0.0106, 1, 3, 1, 1, 3; 1, 2, 1, 3, 2, 2, 0.5885, 1, 3, 1, 1, 3; 1, 1, 1, 1, 1, 2, 0.4555, 1, 5, 2, 1, 3; 2, 2, 2, 1, 1, 2, 0.6502, 4, 3, 2, 1, 3; 1, 1, 1, 3, 1, 1,-0.1601, 1, 3, 2, 1, 3; 2, 2, 1, 3, 2, 3, 1.6910, 1, 1, 2, 1, 3; 2, 2, 2, 3, 1, 2, 0.1053, 4, 4, 2, 1, 3; 2, 1, 2, 3, 2, 2,-0.4037, 3, 4, 1, 2, 3; 1, 3, 2, 3, 1, 3,-0.5853, 3, 2, 1, 2, 3; 2, 3, 2, 1, 1, 1,-0.3037, 1, 3, 1, 2, 3; 1, 3, 1, 1, 2, 2,-0.0774, 1, 4, 1, 2, 3; 2, 3, 1, 2, 2, 1, 0.4733, 4, 5, 1, 2, 3; 1, 3, 2, 2, 1, 2,-0.0354, 4, 2, 2, 2, 3; 1, 3, 2, 2, 1, 1,-0.6640, 2, 1, 2, 2, 3; 2, 3, 1, 3, 1, 1, 0.0335, 4, 4, 2, 2, 3; 1, 2, 2, 2, 1, 3, 0.1351, 1, 1, 2, 2, 3; 1, 1, 2, 1, 2, 3,-0.5951, 3, 4, 2, 2, 3; 2, 2, 2, 3, 1, 3, 0.2735, 3, 2, 1, 3, 3; 2, 2, 1, 1, 1, 3, 0.3157, 1, 2, 1, 3, 3; 2, 2, 2, 1, 1, 1,-1.0843, 2, 3, 1, 3, 3; 1, 2, 2, 1, 2, 2,-0.0836, 4, 2, 1, 3, 3; 2, 1, 2, 1, 1, 2,-0.2884, 2, 1, 1, 3, 3; 2, 3, 2, 3, 2, 3,-0.1006, 1, 2, 2, 3, 3; 1, 3, 1, 2, 2, 3, 0.5710, 1, 3, 2, 3, 3; 1, 1, 2, 1, 1, 2, 0.2776, 2, 3, 2, 3, 3; 2, 3, 2, 2, 1, 3,-0.7561, 4, 4, 2, 3, 3; 1, 2, 2, 2, 1, 2, 1.5549, 1, 4, 2, 3, 3]; vpr = [int64(1):7]; gamma = zeros(8, 1); gamma(1) = -1; % Estimate initial values for the variance components % Call the initialisation routine once to get lrcomm and licomm lrcomm = int64(0); licomm = int64(2); [nff, nlsv, nrf, rcomm, icomm, ifail] = ... g02jc( ... dat, levels, y, fixed, rndm, lrcomm, licomm); licomm = icomm(1); lrcomm = icomm(2); % Pre-process the data [nff, nlsv, nrf, rcomm, icomm, ifail] = ... g02jc( ... dat, levels, y, fixed, rndm, lrcomm, licomm); % Use default options iopt = zeros(0, 0, 'int64'); ropt = zeros(0, 0); lb = nff + nrf*nlsv; % Perform the analysis [gamma, effn, rnkx, ncov, lnlike, id, b, se, czz, cxx, cxz, ifail] = ... g02jd( ... vpr, nvpr, gamma, lb, rcomm, icomm, iopt, ropt); % Print results fprintf('Number of observations (n) = %d\n', n); fprintf('Number of random factors (nrf) = %d\n', nrf); fprintf('Number of fixed factors (nff) = %d\n', nff); fprintf('Number of subject levels (nlsv) = %d\n', nlsv); fprintf('Rank of X (rnkx) = %d\n', rnkx); fprintf('Effective n (effn) = %d\n', effn); fprintf('Number of non-zero variance components (ncov) = %d\n', ncov); fprintf('\nParameter Estimates\n'); if nrf > 0 fprintf('\nRandom Effects\n'); end pb = -999; pfmt = ' '; for k = 1:nrf*nlsv tb = id(1,k); if tb ~= -999 vid = id(2,k); nv = rndm(1,tb); ns = rndm(3+nv,tb); tfmt = sprintf('%d ', id(3+1:3+ns,k)); if ( (pb ~= tb) || (strcmp(tfmt, pfmt) == 0) ) if (k ~= 1) fprintf('\n'); end fprintf(' Subject: '); for l=1:ns fprintf(' Variable %2d (Level %2d)',rndm(3+nv+l,tb), id(3+l,k)); end fprintf('\n'); end if (vid==0) % Intercept fprintf(' Intercept%18s%10.4f %10.4f\n', ' ', b(k), se(k)); else % variable vid specified in rndm aid = rndm(2+vid,tb); if (id(3,k)==0) fprintf(' Variable %2d%16s%10.4f %10.4f\n', aid, ' ', b(k), se(k)); else fprintf(' Variable %2d (Level %2d) %10.4f %10.4f\n', ... aid, id(3,k), b(k), se(k)); end end pfmt = tfmt; end pb = tb; end if nff>0 fprintf('\nFixed Effects\n'); end for k = (nrf*nlsv+1):(nrf*nlsv+nff) if vid~=-999 vid = id(2,k); if vid==0 % Intercept fprintf(' Intercept%18s%10.4f %10.4f\n', ' ', b(k), se(k)); else % vid'th variable specified in fixed aid = fixed(2+vid); if (id(3,k)==0) fprintf(' Variable %2d%16s%10.4f %10.4f\n', aid, ' ', b(k), se(k)); else fprintf(' Variable %2d (Level %2d) %10.4f %10.4f\n', ... aid, id(3,k), b(k), se(k)); end end end end fprintf('\nVariance Components\n'); fprintf(' Estimate Parameter Subject\n'); for k = 1:nvpr fprintf('%10.5f ', gamma(k)); p = 0; for tb = 1:nrndm nv = rndm(1,tb); ns = rndm(3+nv,tb); if (rndm(2,tb)==1) p = p + 1; if (vpr(p)==k) fprintf('Intercept Variables '); fprintf('%2d ', rndm(3+nv+1:3+nv+ns, tb)); fprintf('\n'); end end for i = 1:nv p = p + 1; if (vpr(p)==k) fprintf('Variable %2d Variables %2d ', rndm(2+i,tb)); fprintf('%2d ', rndm(3+nv+1:3+nv+ns, tb)); end end end fprintf('\n'); end fprintf('\nsigma^2 = %15.5f\n', gamma(nvpr+1)); fprintf('-2log likelihood = %15.5f\n', lnlike);
g02jd example results Number of observations (n) = 90 Number of random factors (nrf) = 55 Number of fixed factors (nff) = 4 Number of subject levels (nlsv) = 3 Rank of X (rnkx) = 4 Effective n (effn) = 90 Number of non-zero variance components (ncov) = 7 Parameter Estimates Random Effects Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1) Variable 3 (Level 1) 2.1561 3.7946 Variable 3 (Level 2) 1.8951 3.9284 Variable 4 (Level 1) 0.6496 3.1617 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1) Variable 4 (Level 3) 0.7390 3.1424 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 1) Variable 3 (Level 1) 1.4216 3.3773 Variable 3 (Level 2) -2.8921 3.3953 Variable 4 (Level 1) 3.6789 2.3162 Variable 4 (Level 2) -1.9742 2.3887 Variable 4 (Level 3) -2.2088 2.0697 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 1) Variable 3 (Level 1) -2.9659 3.9127 Variable 3 (Level 2) 2.7951 4.7183 Variable 4 (Level 1) -4.7330 2.3094 Variable 4 (Level 2) 5.5161 2.2330 Variable 4 (Level 3) -0.8417 2.3826 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 1) Variable 3 (Level 1) 4.2202 3.6675 Variable 3 (Level 2) -4.3883 3.4424 Variable 4 (Level 1) -1.1391 3.2187 Variable 4 (Level 2) 1.0814 3.0654 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1) Variable 3 (Level 1) 0.3391 4.0647 Variable 3 (Level 2) 0.1502 3.4787 Variable 4 (Level 1) -1.0026 2.4363 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1) Variable 4 (Level 3) 1.1703 2.6365 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1) Variable 3 (Level 1) 1.2658 3.4819 Variable 3 (Level 2) -1.5356 3.9097 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1) Variable 4 (Level 2) 0.7992 2.7902 Variable 4 (Level 3) -0.8916 2.8763 Subject: Variable 11 (Level 1) Variable 12 (Level 1) Variable 5 (Level 1) -0.4885 2.8206 Variable 5 (Level 2) 1.8829 2.7530 Variable 6 (Level 1) 0.9249 3.7747 Variable 6 (Level 2) -2.3568 3.1624 Variable 6 (Level 3) 4.3117 3.1474 Subject: Variable 11 (Level 2) Variable 12 (Level 1) Variable 5 (Level 1) 1.3898 2.9362 Variable 5 (Level 2) -1.5729 2.8909 Variable 6 (Level 1) 0.2111 3.9967 Variable 6 (Level 2) -3.7083 4.2866 Variable 6 (Level 3) 3.1190 4.7983 Subject: Variable 11 (Level 3) Variable 12 (Level 1) Variable 5 (Level 1) 1.7352 3.1370 Variable 5 (Level 2) -1.6165 3.1713 Variable 6 (Level 1) -1.1102 3.9374 Variable 6 (Level 2) 4.4877 3.6980 Variable 6 (Level 3) -3.1325 3.1966 Subject: Variable 12 (Level 1) Variable 7 0.6827 0.5060 Variable 8 (Level 1) 1.5964 1.3206 Variable 8 (Level 2) -0.7533 1.5663 Variable 8 (Level 3) 0.4035 1.6840 Variable 8 (Level 4) -0.8523 1.7518 Variable 9 (Level 1) 0.5699 1.6236 Variable 9 (Level 2) 0.0012 1.9111 Variable 9 (Level 3) -0.2850 1.9245 Variable 9 (Level 4) 0.4468 2.0329 Variable 9 (Level 5) 0.0030 2.1390 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2) Variable 3 (Level 1) 6.2551 3.3595 Variable 3 (Level 2) 5.6085 3.4127 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2) Variable 4 (Level 2) 2.6922 2.7542 Variable 4 (Level 3) 1.3742 2.8068 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2) Variable 3 (Level 1) 1.5647 3.8353 Variable 3 (Level 2) -2.7565 3.9041 Variable 4 (Level 1) -0.8621 2.8257 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2) Variable 4 (Level 3) 0.4536 2.8070 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 2) Variable 3 (Level 1) -10.1544 3.3433 Variable 3 (Level 2) 3.2446 4.1221 Variable 4 (Level 1) -2.9419 2.3508 Variable 4 (Level 2) 0.2510 3.0675 Variable 4 (Level 3) 0.3224 2.9710 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 2) Variable 3 (Level 1) -1.3577 3.1925 Variable 3 (Level 2) 8.1277 3.9975 Variable 4 (Level 1) -0.4290 2.4578 Variable 4 (Level 2) 2.7495 2.5821 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 2) Variable 3 (Level 1) 4.8432 4.0069 Variable 3 (Level 2) 0.0370 3.6006 Variable 4 (Level 1) 3.0713 2.2706 Variable 4 (Level 2) -1.8899 2.4756 Variable 4 (Level 3) 0.4914 2.2914 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 2) Variable 3 (Level 1) -4.4766 3.3355 Variable 3 (Level 2) -3.7936 4.0759 Variable 4 (Level 1) -0.5459 2.7097 Variable 4 (Level 2) -1.5619 2.7412 Variable 4 (Level 3) -0.7269 2.9735 Subject: Variable 11 (Level 1) Variable 12 (Level 2) Variable 5 (Level 1) 4.8653 3.0706 Variable 5 (Level 2) 0.9011 3.0696 Variable 6 (Level 1) 6.9277 3.8411 Variable 6 (Level 2) -1.3108 3.1667 Variable 6 (Level 3) 6.2916 3.5327 Subject: Variable 11 (Level 2) Variable 12 (Level 2) Variable 5 (Level 1) -0.4047 3.0956 Variable 5 (Level 2) 0.3291 3.0784 Variable 6 (Level 1) 6.9096 3.3073 Variable 6 (Level 2) -1.0680 3.6213 Variable 6 (Level 3) -5.9977 3.7299 Subject: Variable 11 (Level 3) Variable 12 (Level 2) Variable 5 (Level 1) -1.0925 3.0994 Variable 5 (Level 2) -0.7392 2.9900 Variable 6 (Level 1) 2.7758 3.8748 Variable 6 (Level 2) -6.3526 3.3014 Variable 6 (Level 3) -0.2060 3.6481 Subject: Variable 12 (Level 2) Variable 7 0.1711 0.5785 Variable 8 (Level 1) 1.7186 1.9143 Variable 8 (Level 2) -0.6768 1.7352 Variable 8 (Level 3) -0.0439 1.6395 Variable 8 (Level 4) 0.1463 1.5358 Variable 9 (Level 1) 0.9761 2.3930 Variable 9 (Level 2) 6.5436 1.8193 Variable 9 (Level 3) -1.5504 1.8527 Variable 9 (Level 4) 0.1047 2.0244 Variable 9 (Level 5) -3.9386 1.7937 Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 3) Variable 3 (Level 1) 10.6802 3.2596 Variable 3 (Level 2) -1.0290 3.7842 Variable 4 (Level 1) -2.8612 2.2917 Variable 4 (Level 2) 3.9265 2.8934 Variable 4 (Level 3) 2.2427 2.3737 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3) Variable 3 (Level 1) -6.2076 3.3642 Variable 3 (Level 2) -8.7670 3.8463 Variable 4 (Level 1) -2.9251 2.4657 Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3) Variable 4 (Level 3) -2.2077 2.3743 Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 3) Variable 3 (Level 1) -3.3334 3.4665 Variable 3 (Level 2) -0.3111 3.2650 Variable 4 (Level 1) 1.5131 2.4890 Variable 4 (Level 2) -3.0345 3.0562 Variable 4 (Level 3) 0.2722 2.8300 Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 3) Variable 3 (Level 1) 6.5905 4.0386 Variable 3 (Level 2) -5.3168 3.4549 Variable 4 (Level 1) -3.5280 2.9663 Variable 4 (Level 2) 1.7056 2.9293 Variable 4 (Level 3) 2.2590 3.1780 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3) Variable 3 (Level 1) 8.1889 4.1429 Variable 3 (Level 2) -1.5388 3.3333 Variable 4 (Level 1) 3.4338 2.6376 Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3) Variable 4 (Level 3) -1.1544 2.9885 Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 3) Variable 3 (Level 1) -4.4243 4.0049 Variable 3 (Level 2) -4.1349 3.1248 Variable 4 (Level 1) 1.0460 2.6550 Variable 4 (Level 2) -4.4844 2.2843 Variable 4 (Level 3) 0.5046 2.6926 Subject: Variable 11 (Level 1) Variable 12 (Level 3) Variable 5 (Level 1) 5.3030 3.0278 Variable 5 (Level 2) -8.1794 3.1335 Variable 6 (Level 1) -0.8188 3.7810 Variable 6 (Level 2) -2.5078 3.1514 Variable 6 (Level 3) -2.6138 3.4600 Subject: Variable 11 (Level 2) Variable 12 (Level 3) Variable 5 (Level 1) 4.3331 3.1489 Variable 5 (Level 2) -5.6142 3.1649 Variable 6 (Level 1) -5.8804 3.1770 Variable 6 (Level 2) 5.4265 3.3006 Variable 6 (Level 3) -2.1917 3.2156 Subject: Variable 11 (Level 3) Variable 12 (Level 3) Variable 5 (Level 1) 0.4305 2.9144 Variable 5 (Level 2) -1.4620 3.0119 Variable 6 (Level 1) 14.3595 3.9254 Variable 6 (Level 2) -5.2399 3.3099 Variable 6 (Level 3) -11.2498 3.2212 Subject: Variable 12 (Level 3) Variable 7 -0.3839 0.6755 Variable 8 (Level 1) 2.7549 1.6017 Variable 8 (Level 2) 0.4377 1.8826 Variable 8 (Level 3) -0.2261 1.9909 Variable 8 (Level 4) -4.5051 1.5398 Variable 9 (Level 1) -4.7091 2.1458 Variable 9 (Level 2) 3.7940 1.9872 Variable 9 (Level 3) -1.7994 1.8614 Variable 9 (Level 4) 0.4480 1.9016 Variable 9 (Level 5) -0.6047 2.4729 Fixed Effects Intercept 1.6433 2.4596 Variable 1 (Level 2) -1.6224 0.8549 Variable 2 (Level 2) -2.4817 1.1414 Variable 2 (Level 3) 0.4624 1.2133 Variance Components Estimate Parameter Subject 36.32491 Variable 3 Variables 10 11 12 12.45090 Variable 4 Variables 10 11 12 19.62767 Variable 5 Variables 11 12 40.53480 Variable 6 Variables 11 12 0.56320 Variable 7 Variables 12 5.81968 Variable 8 Variables 12 10.86069 Variable 9 Variables 12 sigma^2 = 0.00239 -2log likelihood = 608.19449