hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_correg_coeffs_pearson_subset (g02bg)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_correg_coeffs_pearson_subset (g02bg) computes means and standard deviations, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for selected variables.

Syntax

[xbar, std, ssp, r, ifail] = g02bg(x, kvar, 'n', n, 'm', m, 'nvars', nvars)
[xbar, std, ssp, r, ifail] = nag_correg_coeffs_pearson_subset(x, kvar, 'n', n, 'm', m, 'nvars', nvars)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: n was made optional

Description

The input data consist of n observations for each of m variables, given as an array
xij,  i=1,2,,nn2,j=1,2,,mm2,  
where xij is the ith observation on the jth variable, together with the subset of these variables, v1,v2,,vp, for which information is required.
The quantities calculated are:
(a) Means:
x-j=1ni=1nxij,  j=v1,v2,,vp.  
(b) Standard deviations:
sj=1n- 1 i= 1n xij-x-j 2,   j=v1,v2,,vp.  
(c) Sums of squares and cross-products of deviations from zero:
Sjk=i=1nxij-x-jxik-x-k,  j,k=v1,v2,,vp.  
(d) Pearson product-moment correlation coefficients:
Rjk=SjkSjjSkk ,   j,k=v1,v2,vp.  
If Sjj or Skk is zero, Rjk is set to zero.

References

None.

Parameters

Compulsory Input Parameters

1:     xldxm – double array
ldx, the first dimension of the array, must satisfy the constraint ldxn.
xij must be set to xij, the value of the ith observation on the jth variable, for i=1,2,,n and j=1,2,,m.
2:     kvarnvars int64int32nag_int array
kvarj must be set to the column number in x of the jth variable for which information is required, for j=1,2,,p.
Constraint: 1kvarjm, for j=1,2,,p.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array x.
n, the number of observations or cases.
Constraint: n2.
2:     m int64int32nag_int scalar
Default: the second dimension of the array x.
m, the number of variables.
Constraint: m2.
3:     nvars int64int32nag_int scalar
Default: the dimension of the array kvar.
p, the number of variables for which information is required.
Constraint: 2nvarsm.

Output Parameters

1:     xbarnvars – double array
The mean value, x-j, of the variable specified in kvarj, for j=1,2,,p.
2:     stdnvars – double array
The standard deviation, sj, of the variable specified in kvarj, for j=1,2,,p.
3:     sspldsspnvars – double array
sspjk is the cross-product of deviations, Sjk, for the variables specified in kvarj and kvark, for j=1,2,,p and k=1,2,,p.
4:     rldrnvars – double array
rjk is the product-moment correlation coefficient, Rjk, between the variables specified in kvarj and kvark, for j=1,2,,p and k=1,2,,p.
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,n<2.
   ifail=2
On entry,nvars<2,
ornvars>m.
   ifail=3
On entry,ldx<n,
orldssp<nvars,
orldr<nvars.
   ifail=4
On entry,kvarj<1,
orkvarj>m for some j=1,2,,nvars.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

nag_correg_coeffs_pearson_subset (g02bg) does not use additional precision arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n.

Further Comments

The time taken by nag_correg_coeffs_pearson_subset (g02bg) depends on n and p.
The function uses a two pass algorithm.

Example

This example reads in a set of data consisting of five observations on each of four variables. The means, standard deviations, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for the fourth, first and second variables are then calculated and printed.
function g02bg_example


fprintf('g02bg example results\n\n');

x = [ 3,  3,  1,  2;
      6,  4, -1,  4;
      9,  0,  5,  9;
     12,  2,  0,  0;
     -1,  5,  4, 12];
[n,m] = size(x);
fprintf('Number of variables (columns) = %d\n', m);
fprintf('Number of cases     (rows)    = %d\n\n', n);
disp('Data matrix is:-');
disp(x);

kvar = [int64(4); 1; 2];
nvar = size(kvar,1);

[xbar, std, ssp, r, ifail] = g02bg( ...
                                    x, kvar);

fprintf('Variable   Mean     St. dev.\n');
fprintf('%5d%11.4f%11.4f\n',[double(kvar) xbar(1:nvar) std(1:nvar)]');
fprintf('\nSums of squares and cross-products of deviations\n');
disp(ssp(1:nvar,1:nvar))
fprintf('Correlation coefficients\n');
disp(r(1:nvar,1:nvar));


g02bg example results

Number of variables (columns) = 4
Number of cases     (rows)    = 5

Data matrix is:-
     3     3     1     2
     6     4    -1     4
     9     0     5     9
    12     2     0     0
    -1     5     4    12

Variable   Mean     St. dev.
    4     5.4000     4.9800
    1     5.8000     5.0695
    2     2.8000     1.9235

Sums of squares and cross-products of deviations
   99.2000  -57.6000    6.4000
  -57.6000  102.8000  -29.2000
    6.4000  -29.2000   14.8000

Correlation coefficients
    1.0000   -0.5704    0.1670
   -0.5704    1.0000   -0.7486
    0.1670   -0.7486    1.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015