hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_correg_corrmat_nearest_kfactor (g02ae)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_correg_corrmat_nearest_kfactor (g02ae) computes the factor loading matrix associated with the nearest correlation matrix with k-factor structure, in the Frobenius norm, to a given square, input matrix.

Syntax

[g, x, iter, feval, nrmpgd, ifail] = g02ae(g, k, 'n', n, 'errtol', errtol, 'maxit', maxit)
[g, x, iter, feval, nrmpgd, ifail] = nag_correg_corrmat_nearest_kfactor(g, k, 'n', n, 'errtol', errtol, 'maxit', maxit)

Description

A correlation matrix C with k-factor structure may be characterised as a real square matrix that is symmetric, has a unit diagonal, is positive semidefinite and can be written as C=XXT+diagI-XXT, where I is the identity matrix and X has n rows and k columns. X is often referred to as the factor loading matrix.
nag_correg_corrmat_nearest_kfactor (g02ae) applies a spectral projected gradient method to the modified problem minG-XXT+diagXXT-IF such that xiT21, for i=1,2,,n, where xi is the ith row of the factor loading matrix, X, which gives us the solution.

References

Birgin E G, Martínez J M and Raydan M (2001) Algorithm 813: SPG–software for convex-constrained optimization ACM Trans. Math. Software 27 340–349
Borsdorf R, Higham N J and Raydan M (2010) Computing a nearest correlation matrix with factor structure. SIAM J. Matrix Anal. Appl. 31(5) 2603–2622

Parameters

Compulsory Input Parameters

1:     gldgn – double array
ldg, the first dimension of the array, must satisfy the constraint ldgn.
G, the initial matrix.
2:     k int64int32nag_int scalar
k, the number of factors and columns of X.
Constraint: 0<kn.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array g and the second dimension of the array g. (An error is raised if these dimensions are not equal.)
n, the order of the matrix G.
Constraint: n>0.
2:     errtol – double scalar
Default: 0.0 
The termination tolerance for the projected gradient norm. See references for further details. If errtol0.0 then 0.01 is used. This is often a suitable default value.
3:     maxit int64int32nag_int scalar
Default: 0 
Specifies the maximum number of iterations in the spectral projected gradient method.
If maxit0, 40000 is used.

Output Parameters

1:     gldgn – double array
A symmetric matrix 12G+GT with the diagonal elements set to unity.
2:     xldxk – double array
Contains the matrix X.
3:     iter int64int32nag_int scalar
The number of steps taken in the spectral projected gradient method.
4:     feval int64int32nag_int scalar
The number of evaluations of G-XXT+diagXXT-IF.
5:     nrmpgd – double scalar
The norm of the projected gradient at the final iteration.
6:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: 0<kn.
Constraint: ldgn.
Constraint: ldxn.
Constraint: n>0.
   ifail=2
Spectral gradient method fails to converge in _ iterations.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The returned accuracy is controlled by errtol and limited by machine precision.

Further Comments

Arrays are internally allocated by nag_correg_corrmat_nearest_kfactor (g02ae). The total size of these arrays is n×n+4×n×k+nb+3×n+n+50 double elements and 6×n integer elements. Here nb is the block size required for optimal performance by nag_lapack_dsytrd (f08fe) and nag_lapack_dormtr (f08fg) which are called internally. All allocated memory is freed before return of nag_correg_corrmat_nearest_kfactor (g02ae).
See nag_mv_factor (g03ca) for constructing the factor loading matrix from a known correlation matrix.

Example

This example finds the nearest correlation matrix with k=2 factor structure to:
G = 2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2  
function g02ae_example


fprintf('g02ae example results\n\n');

g = [2, -1,  0,  0;
    -1,  2, -1,  0;
     0, -1,  2, -1;
     0,  0, -1,  2];
k = int64(2);

% Calculate nearest correlation matrix
[g, x, iter, feval, nrmpgd, ifail] = ...
  g02ae(g, k);

fprintf('\n Factor Loading Matrix x:\n');
disp(x);
fprintf('\n Number of Newton steps taken:   %d\n', iter);
fprintf(' Number of function evaluations: %d\n', feval);

% Generate Nearest k factor correlation matrix

fprintf('\n Nearest Correlation Matrix:\n');
disp(x*transpose(x) + diag(diag(eye(4)-x*transpose(x))));


g02ae example results


 Factor Loading Matrix x:
    0.7665   -0.6271
   -0.4250    0.9052
   -0.4250   -0.9052
    0.7665    0.6271


 Number of Newton steps taken:   5
 Number of function evaluations: 6

 Nearest Correlation Matrix:
    1.0000   -0.8935    0.2419    0.1943
   -0.8935    1.0000   -0.6388    0.2419
    0.2419   -0.6388    1.0000   -0.8935
    0.1943    0.2419   -0.8935    1.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015