hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_correg_corrmat_nearest (g02aa)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_correg_corrmat_nearest (g02aa) computes the nearest correlation matrix, in the Frobenius norm, to a given square, input matrix.

Syntax

[g, x, iter, feval, nrmgrd, ifail] = g02aa(g, 'n', n, 'errtol', errtol, 'maxits', maxits, 'maxit', maxit)
[g, x, iter, feval, nrmgrd, ifail] = nag_correg_corrmat_nearest(g, 'n', n, 'errtol', errtol, 'maxits', maxits, 'maxit', maxit)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 23: errtol, maxits and maxit were made optional

Description

A correlation matrix may be characterised as a real square matrix that is symmetric, has a unit diagonal and is positive semidefinite.
nag_correg_corrmat_nearest (g02aa) applies an inexact Newton method to a dual formulation of the problem, as described by Qi and Sun (2006). It applies the improvements suggested by Borsdorf and Higham (2010).

References

Borsdorf R and Higham N J (2010) A preconditioned (Newton) algorithm for the nearest correlation matrix IMA Journal of Numerical Analysis 30(1) 94–107
Qi H and Sun D (2006) A quadratically convergent Newton method for computing the nearest correlation matrix SIAM J. Matrix AnalAppl 29(2) 360–385

Parameters

Compulsory Input Parameters

1:     gldgn – double array
ldg, the first dimension of the array, must satisfy the constraint ldgn.
G, the initial matrix.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array g and the second dimension of the array g. (An error is raised if these dimensions are not equal.)
The size of the matrix G.
Constraint: n>0.
2:     errtol – double scalar
Default: 0.0 
The termination tolerance for the Newton iteration. If errtol0.0 then n×machine precision is used.
3:     maxits int64int32nag_int scalar
Default: 0 
maxits specifies the maximum number of iterations used for the iterative scheme used to solve the linear algebraic equations at each Newton step.
If maxits0, 2×n is used.
4:     maxit int64int32nag_int scalar
Default: 0 
Specifies the maximum number of Newton iterations.
If maxit0, 200 is used.

Output Parameters

1:     gldgn – double array
A symmetric matrix 12G+GT with the diagonal set to I.
2:     xldxn – double array
Contains the nearest correlation matrix.
3:     iter int64int32nag_int scalar
The number of Newton steps taken.
4:     feval int64int32nag_int scalar
The number of function evaluations of the dual problem.
5:     nrmgrd – double scalar
The norm of the gradient of the last Newton step.
6:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail=1
Constraint: ldgn.
Constraint: ldxn.
Constraint: n>0.
   ifail=2
Newton iteration fails to converge in _ iterations.
W  ifail=3
Machine precision is limiting convergence.
The array returned in x may still be of interest.
   ifail=4
An intermediate eigenproblem could not be solved. This should not occur. Please contact NAG with details of your call.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The returned accuracy is controlled by errtol and limited by machine precision.

Further Comments

Arrays are internally allocated by nag_correg_corrmat_nearest (g02aa). The total size of these arrays is 11×n+3×n×n+max2×n×n+6×n+1,120+9×n real elements and 5×n+3 integer elements.

Example

This example finds the nearest correlation matrix to:
G = 2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2  
function g02aa_example


fprintf('g02aa example results\n\n');

g = [ 2, -1,  0,  0;
     -1,  2, -1,  0;
      0, -1,  2, -1;
      0,  0, -1,  2];

[g, x, iter, feval, nrmgrd, ifail] = ...
  g02aa(g);

fprintf('\n     Nearest Correlation Matrix\n');
disp(x);
fprintf('\n Number of Newton steps taken:   %d\n', iter);
fprintf(' Number of function evaluations: %d\n', feval);
if (nrmgrd > 4*x02aj)
  fprintf(' Norm of gradient of last Newton step: %6.4f\n', nrmgrd);
end


g02aa example results


     Nearest Correlation Matrix
    1.0000   -0.8084    0.1916    0.1068
   -0.8084    1.0000   -0.6562    0.1916
    0.1916   -0.6562    1.0000   -0.8084
    0.1068    0.1916   -0.8084    1.0000


 Number of Newton steps taken:   3
 Number of function evaluations: 4
 Norm of gradient of last Newton step: 0.0000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015