hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_stat_prob_hypergeom_vector (g01sl)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_stat_prob_hypergeom_vector (g01sl) returns a number of the lower tail, upper tail and point probabilities for the hypergeometric distribution.

Syntax

[plek, pgtk, peqk, ivalid, ifail] = g01sl(n, l, m, k, 'ln', ln, 'll', ll, 'lm', lm, 'lk', lk)
[plek, pgtk, peqk, ivalid, ifail] = nag_stat_prob_hypergeom_vector(n, l, m, k, 'ln', ln, 'll', ll, 'lm', lm, 'lk', lk)

Description

Let X = Xi: i=1 , 2 ,, r  denote a vector of random variables having a hypergeometric distribution with parameters ni, li and mi. Then
Prob Xi = ki = mi ki ni - mi li - ki ni li ,  
where max0, li + mi - ni ki minli,mi , 0lini and 0mini.
The hypergeometric distribution may arise if in a population of size ni a number mi are marked. From this population a sample of size li is drawn and of these ki are observed to be marked.
The mean of the distribution = limi ni , and the variance = limini-lini-mi ni2ni-1 .
nag_stat_prob_hypergeom_vector (g01sl) computes for given ni, li, mi and ki the probabilities: ProbXiki, ProbXi>ki and ProbXi=ki using an algorithm similar to that described in Knüsel (1986) for the Poisson distribution.
The input arrays to this function are designed to allow maximum flexibility in the supply of vector arguments by re-using elements of any arrays that are shorter than the total number of evaluations required. See Vectorized Routines in the G01 Chapter Introduction for further information.

References

Knüsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7 1022–1036

Parameters

Compulsory Input Parameters

1:     nln int64int32nag_int array
ni, the parameter of the hypergeometric distribution with ni=nj, j=i-1 mod ln+1, for i=1,2,,maxln,ll,lm,lk.
Constraint: nj0, for j=1,2,,ln.
2:     lll int64int32nag_int array
li, the parameter of the hypergeometric distribution with li=lj, j=i-1 mod ll+1.
Constraint: 0 li ni .
3:     mlm int64int32nag_int array
mi, the parameter of the hypergeometric distribution with mi=mj, j=i-1 mod lm+1.
Constraint: 0 mi ni .
4:     klk int64int32nag_int array
ki, the integer which defines the required probabilities with ki=kj, j=i-1 mod lk+1.
Constraint: max0, li + mi - ni ki minli,mi .

Optional Input Parameters

1:     ln int64int32nag_int scalar
Default: the dimension of the array n.
The length of the array n
Constraint: ln>0.
2:     ll int64int32nag_int scalar
Default: the dimension of the array l.
The length of the array l
Constraint: ll>0.
3:     lm int64int32nag_int scalar
Default: the dimension of the array m.
The length of the array m
Constraint: lm>0.
4:     lk int64int32nag_int scalar
Default: the dimension of the array k.
The length of the array k
Constraint: lk>0.

Output Parameters

1:     plek: – double array
The dimension of the array plek will be maxln,ll,lm,lk
Prob Xi ki , the lower tail probabilities.
2:     pgtk: – double array
The dimension of the array pgtk will be maxln,ll,lm,lk
Prob Xi > ki , the upper tail probabilities.
3:     peqk: – double array
The dimension of the array peqk will be maxln,ll,lm,lk
Prob Xi = ki , the point probabilities.
4:     ivalid: int64int32nag_int array
The dimension of the array ivalid will be maxln,ll,lm,lk
ivalidi indicates any errors with the input arguments, with
ivalidi=0
No error.
ivalidi=1
On entry,ni<0.
ivalidi=2
On entry,li<0,
orli>ni.
ivalidi=3
On entry,mi<0,
ormi>ni.
ivalidi=4
On entry,ki<0,
orki>li,
orki>mi,
orki<li+mi-ni.
ivalidi=5
On entry,ni is too large to be represented exactly as a real number.
ivalidi=6
On entry,the variance (see Description) exceeds 106.
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
On entry, at least one value of n, l, m or k was invalid, or the variance was too large.
Check ivalid for more information.
   ifail=2
Constraint: ln>0.
   ifail=3
Constraint: ll>0.
   ifail=4
Constraint: lm>0.
   ifail=5
Constraint: lk>0.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Results are correct to a relative accuracy of at least 10-6 on machines with a precision of 9 or more decimal digits (provided that the results do not underflow to zero).

Further Comments

The time taken by nag_stat_prob_hypergeom_vector (g01sl) to calculate each probability depends on the variance (see Description) and on ki. For given variance, the time is greatest when kilimi/ni (= the mean), and is then approximately proportional to the square-root of the variance.

Example

This example reads a vector of values for n, l, m and k, and prints the corresponding probabilities.
function g01sl_example


fprintf('g01sl example results\n\n');

n = [int64(10); 40; 155; 1000];
l = [int64( 2); 10;  35;  444];
m = [int64( 5);  3; 122;  500];
k = [int64( 1);  2;  22;  220];

[plek, pgtk, peqk, ivalid, ifail] = ...
  g01sl(n, l, m, k);

fprintf('   n   l   m   k     plek      pgtk      peqk\n');
ln  = numel(n);
ll  = numel(l);
lm  = numel(m);
lk  = numel(k);
len = max ([ln, ll, lm, lk]);
for i=0:len-1
  fprintf('%4d%4d%4d%4d%10.5f%10.5f%10.5f\n', n(mod(i,ln)+1), ...
          l(mod(i,ll)+1), m(mod(i,lm)+1), k(mod(i,lk)+1), plek(i+1), ...
          pgtk(i+1), peqk(i+1));
end


g01sl example results

   n   l   m   k     plek      pgtk      peqk
  10   2   5   1   0.77778   0.22222   0.55556
  40  10   3   2   0.98785   0.01215   0.13664
 155  35 122  22   0.01101   0.98899   0.00779
1000 444 500 220   0.42429   0.57571   0.04913

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015