Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_blast_damin_val (f16jr)

## Purpose

nag_blast_damin_val (f16jr) computes, with respect to absolute value, the smallest component of a real vector, along with the index of that component.

## Syntax

[k, r] = f16jr(n, x, incx)
[k, r] = nag_blast_damin_val(n, x, incx)

## Description

nag_blast_damin_val (f16jr) computes, with respect to absolute value, the smallest component, $r$, of an $n$-element real vector $x$, and determines the smallest index, $k$, such that
 $r=xk=minjxj.$

## References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{n}$int64int32nag_int scalar
$n$, the number of elements in $x$.
2:     $\mathrm{x}\left(1+\left({\mathbf{n}}-1\right)×\left|{\mathbf{incx}}\right|\right)$ – double array
The vector $x$. Element ${x}_{\mathit{i}}$ is stored in ${\mathbf{x}}\left(\left(\mathit{i}-1\right)×\left|{\mathbf{incx}}\right|+1\right)$, for $\mathit{i}=1,2,\dots ,n$.
3:     $\mathrm{incx}$int64int32nag_int scalar
The increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.

None.

### Output Parameters

1:     $\mathrm{k}$int64int32nag_int scalar
$k$, the index, from the set $\left\{1,2,\dots ,{\mathbf{n}}\right\}$, of the smallest component of $x$ with respect to absolute value. If ${\mathbf{n}}\le 0$ on input then k is returned as $0$.
2:     $\mathrm{r}$ – double scalar
$r$, the smallest component of $x$ with respect to absolute value. If ${\mathbf{n}}\le 0$ on input then r is returned as $0.0$.

## Error Indicators and Warnings

If ${\mathbf{incx}}=0$, an error message is printed and program execution is terminated.

## Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

None.

## Example

This example computes the smallest component with respect to absolute value and index of that component for the vector
 $x= 1,10,11,-2,9T .$
```function f16jr_example

fprintf('f16jr example results\n\n');

% minabs real and location
n    = int64(5);
x    = [1   10   11   -2   9];
incx = int64(1);

[xloc, xmin] = f16jr(n, x, incx);

fprintf('minabs(');
fprintf('%5.1f',x);
fprintf(') = |x(%4d)| = %5.1f\n', xloc, xmin);

```
```f16jr example results

minabs(  1.0 10.0 11.0 -2.0  9.0) = |x(   1)| =   1.0
```