hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgglse (f08zn)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgglse (f08zn) solves a complex linear equality-constrained least squares problem.

Syntax

[a, b, c, d, x, info] = f08zn(a, b, c, d, 'm', m, 'n', n, 'p', p)
[a, b, c, d, x, info] = nag_lapack_zgglse(a, b, c, d, 'm', m, 'n', n, 'p', p)

Description

nag_lapack_zgglse (f08zn) solves the complex linear equality-constrained least squares (LSE) problem
minimize x c-Ax2  subject to  Bx=d  
where A is an m by n matrix, B is a p by n matrix, c is an m element vector and d is a p element vector. It is assumed that pnm+p, rankB=p and rankE=n, where E= A B . These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices B and A.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear Algebra Appl. (Volume 162–164) 243–271
Eldèn L (1980) Perturbation theory for the least squares problem with linear equality constraints SIAM J. Numer. Anal. 17 338–350

Parameters

Compulsory Input Parameters

1:     alda: – complex array
The first dimension of the array a must be at least max1,m.
The second dimension of the array a must be at least max1,n.
The m by n matrix A.
2:     bldb: – complex array
The first dimension of the array b must be at least max1,p.
The second dimension of the array b must be at least max1,n.
The p by n matrix B.
3:     cm – complex array
The right-hand side vector c for the least squares part of the LSE problem.
4:     dp – complex array
The right-hand side vector d for the equality constraints.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the dimension of the array c and the first dimension of the array a. (An error is raised if these dimensions are not equal.)
m, the number of rows of the matrix A.
Constraint: m0.
2:     n int64int32nag_int scalar
Default: the second dimension of the arrays a, b.
n, the number of columns of the matrices A and B.
Constraint: n0.
3:     p int64int32nag_int scalar
Default: the dimension of the array d and the first dimension of the array b. (An error is raised if these dimensions are not equal.)
p, the number of rows of the matrix B.
Constraint: 0pnm+p.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be max1,m.
The second dimension of the array a will be max1,n.
2:     bldb: – complex array
The first dimension of the array b will be max1,p.
The second dimension of the array b will be max1,n.
3:     cm – complex array
The residual sum of squares for the solution vector x is given by the sum of squares of elements cn-p+1,cn-p+2,,cm; the remaining elements are overwritten.
4:     dp – complex array
5:     xn – complex array
The solution vector x of the LSE problem.
6:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info=-i
If info=-i, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: m, 2: n, 3: p, 4: a, 5: lda, 6: b, 7: ldb, 8: c, 9: d, 10: x, 11: work, 12: lwork, 13: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
   info=1
The upper triangular factor R associated with B in the generalized RQ factorization of the pair B,A is singular, so that rankB<p; the least squares solution could not be computed.
   info=2
The N-P by N-P part of the upper trapezoidal factor T associated with A in the generalized RQ factorization of the pair B,A is singular, so that the rank of the matrix (E) comprising the rows of A and B is less than n; the least squares solutions could not be computed.

Accuracy

For an error analysis, see Anderson et al. (1992) and Eldèn (1980). See also Section 4.6 of Anderson et al. (1999).

Further Comments

When mn=p, the total number of real floating-point operations is approximately 83n26m+n; if pn, the number reduces to approximately 83n23m-n.

Example

This example solves the least squares problem
minimize x c-Ax2   subject to   Bx=d  
where
c = -2.54+0.09i 1.65-2.26i -2.11-3.96i 1.82+3.30i -6.41+3.77i 2.07+0.66i ,  
and
A = 0.96-0.81i -0.03+0.96i -0.91+2.06i -0.05+0.41i -0.98+1.98i -1.20+0.19i -0.66+0.42i -0.81+0.56i 0.62-0.46i 1.01+0.02i 0.63-0.17i -1.11+0.60i 0.37+0.38i 0.19-0.54i -0.98-0.36i 0.22-0.20i 0.83+0.51i 0.20+0.01i -0.17-0.46i 1.47+1.59i 1.08-0.28i 0.20-0.12i -0.07+1.23i 0.26+0.26i ,  
B = 1.0+0.0i 0.0i+0.0 -1.0+0.0i 0.0i+0.0 0.0i+0.0 1.0+0.0i 0.0i+0.0 -1.0+0.0i  
and
d = 0 0 .  
The constraints Bx=d  correspond to x1 = x3  and x2 = x4 .
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.
function f08zn_example


fprintf('f08zn example results\n\n');

% Solve the equality-constrained least-squares problem
% minimize ||c - A*x|| (in the 2-norm) subject to B*x = D

a = [ 0.96 - 0.81i, -0.03 + 0.96i, -0.91 + 2.06i, -0.05 + 0.41i;
     -0.98 + 1.98i, -1.20 + 0.19i, -0.66 + 0.42i, -0.81 + 0.56i;
      0.62 - 0.46i,  1.01 + 0.02i,  0.63 - 0.17i, -1.11 + 0.60i;
      0.37 + 0.38i,  0.19 - 0.54i, -0.98 - 0.36i,  0.22 - 0.20i;
      0.83 + 0.51i,  0.20 + 0.01i, -0.17 - 0.46i,  1.47 + 1.59i;
      1.08 - 0.28i,  0.20 - 0.12i, -0.07 + 1.23i,  0.26 + 0.26i];
b = complex([1,  0, -1,  0;
             0,  1,  0, -1]);
c = [-2.54 + 0.09i;
      1.65 - 2.26i;
     -2.11 - 3.96i;
      1.82 + 3.30i;
     -6.41 + 3.77i;
      2.07 + 0.66i];
d = [complex(0);
      0 + 0i];

%Solve
[~, ~, c, ~, x, info] = f08zn( ...
                               a, b, c, d);

fprintf('\nConstrained least-squares solution\n');
disp(x);

rnorm = norm(c(3:6));
fprintf('Square root of the residual sum of squares\n%11.2e\n',rnorm);


f08zn example results


Constrained least-squares solution
   1.0874 - 1.9621i
  -0.7409 + 3.7297i
   1.0874 - 1.9621i
  -0.7409 + 3.7297i

Square root of the residual sum of squares
   1.59e-01

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015