hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_ztgsyl (f08yv)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_ztgsyl (f08yv) solves the generalized complex triangular Sylvester equations.

Syntax

[c, f, scale, dif, info] = f08yv(trans, ijob, a, b, c, d, e, f, 'm', m, 'n', n)
[c, f, scale, dif, info] = nag_lapack_ztgsyl(trans, ijob, a, b, c, d, e, f, 'm', m, 'n', n)

Description

nag_lapack_ztgsyl (f08yv) solves either the generalized complex Sylvester equations
AR-LB =αC DR-LE =αF, (1)
or the equations
AHR+DHL =αC RBH+LEH =-αF, (2)
where the pair A,D are given m by m matrices in generalized Schur form, B,E are given n by n matrices in generalized Schur form and C,F are given m by n matrices. The pair R,L are the m by n solution matrices, and α is an output scaling factor determined by the function to avoid overflow in computing R,L.
Equations (1) are equivalent to equations of the form
Zx=αb ,  
where
Z = IA-BHI ID-EHI  
and  is the Kronecker product. Equations (2) are then equivalent to
ZHy = αb .  
The pair S,T are in generalized Schur form if S and T are upper triangular as returned, for example, by nag_lapack_zgges (f08xn), or nag_lapack_zhgeqz (f08xs) with job='S'.
Optionally, the function estimates DifA,D,B,E, the separation between the matrix pairs A,D and B,E, which is the smallest singular value of Z. The estimate can be based on either the Frobenius norm, or the 1-norm. The 1-norm estimate can be three to ten times more expensive than the Frobenius norm estimate, but makes the condition estimation uniform with the nonsymmetric eigenproblem. The Frobenius norm estimate provides a low cost, but equally reliable estimate. For more information see Sections 2.4.8.3 and 4.11.1.3 of Anderson et al. (1999) and Kågström and Poromaa (1996).

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Kågström B (1994) A perturbation analysis of the generalized Sylvester equation AR-LB,DR-LE=c,F SIAM J. Matrix Anal. Appl. 15 1045–1060
Kågström B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math. Software 22 78–103

Parameters

Compulsory Input Parameters

1:     trans – string (length ≥ 1)
If trans='N', solve the generalized Sylvester equation (1).
If trans='C', solve the ‘conjugate transposed’ system (2).
Constraint: trans='N' or 'C'.
2:     ijob int64int32nag_int scalar
Specifies what kind of functionality is to be performed when trans='N'.
ijob=0
Solve (1) only.
ijob=1
The functionality of ijob=0 and 3.
ijob=2
The functionality of ijob=0 and 4.
ijob=3
Only an estimate of Dif A,D,B,E  is computed based on the Frobenius norm.
ijob=4
Only an estimate of Dif A,D,B,E  is computed based on the 1-norm.
If trans='C', ijob is not referenced.
Constraint: if trans='N', 0ijob4.
3:     alda: – complex array
The first dimension of the array a must be at least max1,m.
The second dimension of the array a must be at least max1,m.
The upper triangular matrix A.
4:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,n.
The upper triangular matrix B.
5:     cldc: – complex array
The first dimension of the array c must be at least max1,m.
The second dimension of the array c must be at least max1,n.
Contains the right-hand-side matrix C.
6:     dldd: – complex array
The first dimension of the array d must be at least max1,m.
The second dimension of the array d must be at least max1,m.
The upper triangular matrix D.
7:     elde: – complex array
The first dimension of the array e must be at least max1,n.
The second dimension of the array e must be at least max1,n.
The upper triangular matrix E.
8:     fldf: – complex array
The first dimension of the array f must be at least max1,m.
The second dimension of the array f must be at least max1,n.
Contains the right-hand side matrix F.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the first dimension of the arrays a, c, d, f and the second dimension of the arrays a, d.
m, the order of the matrices A and D, and the row dimension of the matrices C, F, R and L.
Constraint: m0.
2:     n int64int32nag_int scalar
Default: the first dimension of the arrays b, e and the second dimension of the arrays b, c, e, f.
n, the order of the matrices B and E, and the column dimension of the matrices C, F, R and L.
Constraint: n0.

Output Parameters

1:     cldc: – complex array
The first dimension of the array c will be max1,m.
The second dimension of the array c will be max1,n.
If ijob=0, 1 or 2, c stores the solution matrix R.
If trans='N' and ijob=3 or 4, c holds R, the solution achieved during the computation of the Dif estimate.
2:     fldf: – complex array
The first dimension of the array f will be max1,m.
The second dimension of the array f will be max1,n.
If ijob=0, 1 or 2, f stores the solution matrix L.
If trans='N' and ijob=3 or 4, f holds L, the solution achieved during the computation of the Dif estimate.
3:     scale – double scalar
α, the scaling factor in (1) or (2).
If 0<scale<1, c and f hold the solutions R and L, respectively, to a slightly perturbed system but the input arrays a, b, d and e have not been changed.
If scale=0, c and f hold the solutions R and L, respectively, to the homogeneous system with C=F=0. In this case dif is not referenced.
Normally, scale=1.
4:     dif – double scalar
The estimate of Dif. If ijob=0, dif is not referenced.
5:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info=-i
If info=-i, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: trans, 2: ijob, 3: m, 4: n, 5: a, 6: lda, 7: b, 8: ldb, 9: c, 10: ldc, 11: d, 12: ldd, 13: e, 14: lde, 15: f, 16: ldf, 17: scale, 18: dif, 19: work, 20: lwork, 21: iwork, 22: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
   info>0
A,D and B,E have common or close eigenvalues and so no solution could be computed.

Accuracy

See Kågström (1994) for a perturbation analysis of the generalized Sylvester equation.

Further Comments

The total number of floating-point operations needed to solve the generalized Sylvester equations is approximately 8mnn+m. The Frobenius norm estimate of Dif does not require additional significant computation, but the 1-norm estimate is typically five times more expensive.
The real analogue of this function is nag_lapack_dtgsyl (f08yh).

Example

This example solves the generalized Sylvester equations
AR-LB =αC DR-LE =αF,  
where
A = 4.0+4.0i 1.0+1.0i 1.0+1.0i 2.0-1.0i 0.0i+0.0 2.0+1.0i 1.0+1.0i 1.0+1.0i 0.0i+0.0 0.0i+0.0 2.0-1.0i 1.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 6.0-2.0i ,  
B = 2.0 1.0+1.0i 1.0+1.0i 3.0-1.0i 0.0 1.0i+0.0 2.0+1.0i 1.0+1.0i 0.0 0.0i+0.0 1.0i+0.0 1.0+1.0i 0.0 0.0i+0.0 0.0i+0.0 2.0i+0.0 ,  
D = 1.0+1.0i 1.0-1.0i 1.0+1.0i 1.0-1.0i 0.0i+0.0 6.0-4.0i 1.0-1.0i 1.0+1.0i 0.0i+0.0 0.0i+0.0 2.0+4.0i 1.0-1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 2.0+3.0i ,  
E = 1.0 1.0+1.0i 1.0-1.0i 1.0+1.0i 0.0 2.0i+0.0 1.0+1.0i 1.0-1.0i 0.0 0.0i+0.0 2.0i+0.0 1.0+1.0i 0.0 0.0i+0.0 0.0i+0.0 1.0i+0.0 ,  
C = -13.0+9.0i 2.0+8.0i -2.0+8.0i -2.0+5.0i -9.0-1.0i 0.0+5.0i -7.0-3.0i -6.0-0.0i -1.0+1.0i 4.0+2.0i 4.0-5.0i 9.0-5.0i -6.0+6.0i 9.0+1.0i -2.0+4.0i 22.0-8.0i  
and
F = -6.0+05.0i 4.0-4.0i -3.0+11.0i 3.0-07.0i -5.0+11.0i 12.0-4.0i -2.0+02.0i 0.0+14.0i -5.0-01.0i 0.0+4.0i -2.0+10.0i 3.0-01.0i -6.0-02.0i 1.0+1.0i -7.0-03.0i 4.0+07.0i .  
function f08yv_example


fprintf('f08yv example results\n\n');

% Given generalized Schur form pairs (A,D) and (B,E), and matrices C and F:
% solve AR - LB = alpha*C
%       DR - LE = alpha*F
% for R, L and alpha

% Schur form pairs
A = [ 4 + 4i,  1 + 1i,  1 + 1i,  2 - 1i;
      0 + 0i,  2 + 1i,  1 + 1i,  1 + 1i;
      0 + 0i,  0 + 0i,  2 - 1i,  1 + 1i;
      0 + 0i,  0 + 0i,  0 + 0i,  6 - 2i];
D = [ 1 + 1i,  1 - 1i,  1 + 1i,  1 - 1i;
      0 + 0i,  6 - 4i,  1 - 1i,  1 + 1i;
      0 + 0i,  0 + 0i,  2 + 4i,  1 - 1i;
      0 + 0i,  0 + 0i,  0 + 0i,  2 + 3i];
B = [ 2,       1 + 1i,  1 + 1i,  3 - 1i;
      0 + 0i,  1 + 0i,  2 + 1i,  1 + 1i;
      0 + 0i,  0 + 0i,  1 + 0i,  1 + 1i;
      0 + 0i,  0 + 0i,  0 + 0i,  2 + 0i];
E = [ 1,       1 + 1i,  1 - 1i,  1 + 1i;
      0 + 0i,  2 + 0i,  1 + 1i,  1 - 1i;
      0 + 0i,  0 + 0i,  2 + 0i,  1 + 1i;
      0 + 0i,  0 + 0i,  0 + 0i,  1 + 0i];

% Right hand matrices
C = [-13 +  9i,  2 + 8i, -2 +  8i, -2 +  5i;
      -9 -  1i,  0 + 5i, -7 -  3i, -6 +  0i;
      -1 +  1i,  4 + 2i,  4 -  5i,  9 -  5i;
      -6 +  6i,  9 + 1i, -2 +  4i, 22 -  8i];
F = [ -6 +  5i,  4 - 4i, -3 + 11i,  3 -  7i;
      -5 + 11i, 12 - 4i, -2 +  2i,  0 + 14i;
      -5 -  1i,  0 + 4i, -2 + 10i,  3 -  1i;
      -6 -  2i,  1 + 1i, -7 -  3i,  4 +  7i];

% Solve
trans = 'No transpose';
ijob = int64(0);
[R, L, alpha, ~, info] = f08yv( ...
                                trans, ijob, A, B, C, D, E, F);

disp('Solution matrix R');
disp(R); 
disp('Solution matrix L');
disp(L); 
fprintf('alpha = %10.2e\n', alpha);


f08yv example results

Solution matrix R
   1.0000 + 1.0000i   1.0000 + 1.0000i   1.0000 + 1.0000i   1.0000 + 1.0000i
  -1.0000 + 1.0000i   2.0000 + 1.0000i  -1.0000 + 1.0000i  -1.0000 + 1.0000i
  -1.0000 + 1.0000i   1.0000 + 1.0000i   3.0000 + 1.0000i   1.0000 + 1.0000i
  -1.0000 + 1.0000i   1.0000 + 1.0000i  -1.0000 + 1.0000i   4.0000 + 1.0000i

Solution matrix L
   4.0000 + 1.0000i  -1.0000 + 1.0000i   1.0000 + 1.0000i  -1.0000 + 1.0000i
   1.0000 + 1.0000i   3.0000 + 1.0000i  -1.0000 + 1.0000i   1.0000 + 1.0000i
  -1.0000 + 1.0000i   1.0000 + 1.0000i   2.0000 + 1.0000i  -1.0000 + 1.0000i
   1.0000 + 1.0000i  -1.0000 + 1.0000i   1.0000 + 1.0000i   1.0000 + 1.0000i

alpha =   1.00e+00

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015